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ABSTRACT

This report examines optimum array processing for bit detection
of a binary communication signal in the presence of a directional
interfering signal. The binary communication signal is assumed to

.4 be either completely known or to have random parameters (Rayleigh
amplitude and uniform phase). The interfering signal is a wide-
sense stationary Gaussian process. The receiving antenna is a linear
array of equally spaced isotropic point elements. Statistically
independent white noise is added to the signal at each element.

An analytical expression for the inverse of the covariance
matrix is obtained, and the general structure for the optimum
detector is derived. The optimum processor is a correlation
receiver whose detailed structure is dependent in general on the power

* spectrum of the interference, as well as the other antenna and signal
parameters.

The detection error is calculated for several cases. It is
found that the detection error is minimized if the array elements
have an optimum spacing, determined by the array size and the in-
cidence angles of the desired signal and the interference. When
the optimum spacing is used, the structure of the detection system
is not dependent on the power spectrum of the interfering signal.
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CHAPTER I
INTRODUCTION

C- Statistical decision theory has been applied for some time
to the problem of determining the optimum structure of a receiver.
The basic concept of optimal detection for completely known signals
or known signal with unknown parameters corrupted by additive
Gaussian noise has been discussed extensively in [1-5]. During
the past decade this theory has been extended to analyze a com-
munication system which includes an antenna array. The philosophy
is to seek an optimum performance of the entire system based on
statistical decision theory, rather than to consider the performance
of the array or the receiver separately.

Basically, a decision theory receiver processes the received
signals and makes one of several possible decisions, based on an
optimum decision rule. Peterson et al [6] showed that the re-
ceiver which forms the likelihood ratio from the received signal
and compares it with a threshold is an optimal receiver regardless
of which criterion is used (e.g., Bayes, minimax, Neyman-Pearson,
etc.). The various criteria affect the receiver only in the value
of the threshold setting. A paper by Stocklin [7] formally showed
that optimal space-time signal processing also called for likelihood
ratio detection. Bryn [83 applied Rice's Fourier series repre-
sentation to a vector representation of the signals to obtain a
likelihood ratio detection good for wide-sense stationary processes.

3'. The problem of spacing a finite number of point detectors in a plane
to detect spatially isotropic signals corrupted by spatially iso-
tropic and covariance-separable noise was studied extensively by
Gaerder [9]. Capon [10], Young [11-13], Gallop [14] have also treated
various problems in this area.

The goal of this research is to find and examine the behavior
of an optimum detector for detecting binary signals received by a
linear array of equally spaced isotropic point elements. The novelty
of the problem treated here is that the signal is assumed to be
corrupted by an external directional interfering signal. The
interfering signal is modeled as a wide-sense stationary process.
In addition, the processing unit behind each antenna is assumed to
contribute white noise, statistically independent from one element
to the next.

The research discussed here is motivated by the adaptive
antenna array research currently being conducted at the ElectroScience
Laboratory[24-26]. The purpose of this research is to determine
the performance of the optimum detection system so that this

1o



performance may be taken as a base for evaluating the performance
of the adaptive antenna array.

A similar problem has been treated by Urkowitz [15]. However,
* his approach requires the solution of a matrix integral equation,

and his results, which are carried out only in general terms, do
not include a detailed examination of specific cases.

Two different series representations of a vector random
process are discussed in Van Trees [3]. These two methods both
require the solution to a matrix integral equation, which is tedious
and difficult. The method used here is the scalar Karhunen-Lo'eve
representation. The advantage of this choice is that only one
integral equation needs to be solved. The material will be pre-
sented in the following manner.

Chapter II is devoted to formulating a workable expression for the
covariance matrix and its inverse. First, the inverse of the
covariance matrix associated with broadside interference is obtained
by generalizing the results for a two-element array, a three-
element array, etc. Then an expression for the inverse valid for
an arbitrary arrival angle is obtained by employing a trans-
formation. This transformation relates the original observation
space to a modified space associated with delayed versions of the

%: signals.

In Chapter III, the structure of the optimum processor for
detecting completely known binary signals is found from the likelihood

-4.4 ratio test. Also, the equations for the receiver operating character-
* istics are given. To make the results more specific, somne numerical

results for the case when the desired communication signals are
biphase modulated are given in Chapter IV. The discussion con-
centrates on the directional characteristics of the optimum detector
and its error rate performance.

The optimum system for detecting the signal which has a random
amplitude and phase is investigated in Chapter V. We assume that the
amplitude is a Rayleigh random variable and the phase is uniformly
distributed between -wi and wr. Some numerical results for the case
when the desired signals are on-off keying signals are discussed in
detail in the last section of this Chapter.

In Chapter VI, we briefly discuss the general optimum system for
detecting binary signals with phase and amplitude distributed arbi-
trarily.. Also, we prove that the processing outputs are free from
interference when an optimum-spaced array is used in the detection
system.
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CHAPTER 11B THE COVARIANCE MATRIX AND ITS INVERSE

* A. Introduction

The mathematical model of a general array detection system
is shown in Fig. 2-1. The antenna array which is linear, and
consists of m equally spaced isotropic point elements, is designed
to receive the signal x'(t) from a remote station. The signal
x'(t) may be either one of two waveforms,{a'(t) under hypothesis H a

xI(t) =

fb'(t) under hypothesis H b

and the task of the receiver is to decide which waveform was sent.
The signal transmitted by the source is corrupted by an additive
directional interference n' (t). The output at each antenna terminal
will be the sum of the desired communication signal and the inter-
fering random noise component. Those two components are temporal
and spatial functions.

Suppose the incident angles for the desired and interfering
signals measured from the array axis are e and 0, respectively.
Then the signals received by two adjacent antennas will be out of
phase due to differences in the arrival times. The time delays
T and v, given by

d(2-2) V=?COS 0

are the arrival time differences between adjacent elements fot the
desired signal and the interference, respectively. d is the spacing
between antennas, and c is the speed of light.

Often, the received signal is amplified to a certain level
before being processed. We assume that the gain and phase shift for
each of the m ideal, linear amplifiers are identical. For simplicity,
but without losing generality, the phase shift of each amplifier is
assumed to be zero. Let x1(t) and ni(t) be the outputs of the ith
amplifier when the inputs are x1(t) and ni(t), respectively. Since

3



7THE 1?h ANTENNA

x, (t)nit)

X1 t)**N7THE m'ANTENNA

-j~ Wm)t

Fig.~ ~ ~~~~~~~W 21-oeofgnrlaryd tecinsytm

04



the amplifiers are ideal and do not introduce phase shift, we have

(2-3) x.(t) = x[t-(i-1 )rJ

(2-3) 1
ni(t ) =nEt-(i-l)v] 1 < i <m.

The interfering signal n(t) is assumed to be a wide-sense
stationary Gaussian process of zero-mean,* i.e.,

(2-4) E{n(t)} = E{ni(t)) = 0

(2-5) E{n(t) • n(z)} A R(t-z) = R(z-t)

where R(t-z) is the autocorrelation function of the signal n(t).
The functions wi(t), I < i < m, in Fig. 2-1 represent internal
noises, generated by theamplifiers and other electronic components
(e.g., mixers) in each processing unit (not shown in the figure).
We further assume that the interference and the internal noises
are statistically independent, and wi(t) is a Gaussian white noise
process with zero-mean and spectral height hw for all i. Since
the noise sources in each channel are statistically independent,
we have

(2-6) E{wi(t) • w.(z)} = 6ij - hw • 6(t-z)

where 6ij is the Kronecker delta and 6(.) is the Dirac delta
function.

The goal of this research is to find an optimum processor for
detecting the signal x(t) in the presence of interference. We
treat here the binary detection problem. That is, the signal to
be processed in the ith channel, ri(t), is of one of two forms,
as follows:

(2-7) hypothesis Ha: ri(t) = ai(t) + ni(t) + wi(t)

(2-8) hypothesis Hb: ri(t) = bi(t) + ni(t) + wi(t)

*E{.} is the expectation operator.

5



B. The Covariance Matrix

There are many ways of characterizing waveforms and random
processes. The method adopted here uses an orthogonal series
Karhunen-Loeve representation [17]. That is, we express the wave-
form as a series expansion on the orthonormal basis function
4 { (t)) given by the eigenfunctions of the integral equation [18]

(2-9) XY, O(t) = j c(tu) • 0,(u) * du, 1 < k <

where the bounds specify the observation interval, from t = -T to

t=T, and the kernel of the integral equation is given by,

(2-10) c(t,u) = E{[ni(t) + wi(t)][ni(u) + wi(u)]}

- R(t-u) + hw 6(t-u), 1 < i < m

We have made use of Eqs. (2-5) and (2-6), and the assumption that
ni(t) and wi(t) are uncorrelated, to get Eq. (2-10). The integral
equation may then be written

(2-11) ChW) * OX(t) = R(t-u) .01(u) • du

For a Gaussian random process, the coefficients in the expansion are
statistically independent Gaussian random variables [19]. It is in
this case that the expansion becomes attractive.

We approximate the signal ri(t) for the ith channel by an N-term
expansion

* N(2-12) ri(t)r M

- (aix + nit+wil) 01(t), 1 < m

under hypothesis Hal or

,: N
(2-13) ri(t)= (bi  n (t), 1 < < m

6



under hypothesis Hb, where

Srit ri(t)

a it ai(t)
(2-14 ) b i A b i(t) • (t) dt

n ie ni(t)

L- w i .kwi(t)

We define the observation vector R for the detection system as

R1

R2

(2-15) R A R

Rm

where Ri, associated with the ith channel, is itself a column
vector, i.e.,

• :- il

ri2

p

0

(2-16) Ri A ri1

riN-

7
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The dimension for the Gaussian random vector R is MN. We define*

R2IHk 2

(2- 17)LII

M = ERIHk E R1IH ~ M

RIH k MM

_A under hypothesis Ha

lB under hypothesis Hb
and the covariance matrix

(2-18) K = E {(R-M) (R-M)T} A Ql1

If K is nonsingular,** the probability density function of R for
an rn-channel, N-term expansion is [20J RM)QRM

(2-19) p(RIHk) a I(,)~NK *e

where JKI is the determinant of K 'I

*We use Hk to represent either hypothesis.

**If K is singular, we have a singular detection problem. K becomes
singular if the spectral height hwis zero. We will not examine
this case here.

8
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The following several pages will be devoted to finding a workable
expression for the covariance matrix. Symbolically, we may write

T T.,(Rl .Ml )(Rl .MI) T( R1 .Ml )(R2.M 2 ) T .. (R Rl .MI)(Rm. m )

(2-20) K = E (R2-M2)(R -M1)
T  (R2-M2)(R2-M2)

T  ... I2 M(RM-Mm)
T

L(Rm.Mm)(Ri.M1) T  (Rm-Mm)(R2-M2)T .. (RmMm)(RmMm)T

S- where

,.:MilI riH ik

mi2 ri21 Hk

(2-21) Mik _ A El

mit rit IHk

raiN rNIHk

It is apparent that mjj= ail under hypothesis Ha apd mi. b
under hypothesis HO.For an m-element array, the m' subiatrices

IV may be classified into two types: the one associated with the ith
channel, namely, the autocovariance submatrix

(2-22) Kii A E {(Ri - Mi)(Ri-M)Ti

and the crossvariance submatrix

(2-23) Ki _ E{(Ri-Mi)(RMj) 1 I j,

9
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which is associated with the Ith and jth channels, respectively.
These submatrices may also be expressed in terns of the elements
of R in Eq. (2-15), as follows,ki
(2-24)

(rll'mil)(rjl'mjl) (ril-mil) (rj2-mj2) (ril-mil) (rjN-mJN)

Kij=E' (r12-mi2d(ril-mil) (ri2-mi2)(rj2-j2 (ri2-mi2)(rjN-mjN ,

* . . 0:

(rNmiN)(rjl'mjl) (riN'miN)(rj2-mj2 )  (riN-miN)( rjN-mjN

We proceed to examine the elements of Kij under both hypotheses.
Since rjt and rin are statistically independent Gaussian random
variables, and processes ni(t) and wi(t) are uncorrelated, we have
under Ha 1.1

(2-25) E {(rit-mi)(rjn-mjn)IHa) }

= E { (rirjn)IHa} - aUa in

rT
]= JL. t-u+(J-I)V] • *g(t)n(U) • dudt + 6 1j 6tn . hw

T

= Ij6t n hw + ('X n-hw) J -TL(t #r4t+(J-i] dt

The elements of Kt for M#j hence become
T ,

(2-26) E(rip -mi)(rjn-mjn )Ha} = (Xn-hw) •t).0n[t+lJ-i)v]dt

and the elements of K11 become

10
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(2-27) E{(r1 x-i)rnmi~Ha

(A n-h w f -T~ OXt) (t)dt + 6zn

0 if t n

Ln if k n

The elements of Ki and Ku- under hypothesis Hb may be derived
in the same manner. It is founai that they are identical to those
under hypothesis Ha. Consequently, the covariance matrices under
the hypotheses defined in Eqs. (2-7) and (2-8) are equal, and the
hypothesis detection must rely on the difference in the mean M
associated with each hypothesis. The autocovariance submatrix
and the cross covariance submatrix have the following forms:

Al 0 0 0

0 A2  0 . 0

(2-28) K1  0 0 0

L0 0 0 "' XNJ

(2-29)

A~ = X1 h,) #JIT(t)#1Et+(J-i0uldt (A (hA)J-T 2(t)OEt+i-iN~ft .. (-"w)i.T2

(A I'J~) T Ni01"-0d (X2-h,) J-T N(t)#2[t4(Jt')v~t ... (A-hw) J.T (t)ON[t*(ij~vd

The element of Kij at the in position ,ls equal to that of K..
at the ni position, because Ji

Lb.



T
(2-30) (nh.w) E *{(t) # nEt +(j-l)v] • dt

T= n(u) -T R[t+(j-1)v-u] ( *{it) • dt du

Hence ( - hw) ,ET n(U) • [u+(i-j)v] • du.

Hence, KijK~t and consequently the covariance matrix K is symmetric.
In terms of iii and Kij, the covariance matrix K may be written

(2-31) K= K21 K22  ••K2m

Kmli Km2 K=nu

Since

(2-32) Q A K 'I = (KT) "I "QT

the Q matrix is also symmetric.

.. C. Broadside Interference

To compute the Q matrix, one has to go through a tedious process.
First, the integral equation defined by Eq. (2-11) has to be solved.
Afterwards, one has to compute many integrals in order to get K1i,
Finally, one must invert the covariance matrix K.

Referring to Eq. (2-29), we see that a much simpler expression
for K is obtained if the external interference arrives from the
broadside direction of the array, i.e., if v 0 0. When this is the
case, the orthogonality property of {#t(t)) ensures that all off-
diagonal elements of Ki., Iij, vanish. Furthermore, all cross-
covariance submatrices become equal, as follows:

.1

* 12
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-hw  0 0

0 X2-hw 0

(2-33) K (v=O) =

0 0 • X N-hw

A Ki

Let K* be the covariance matrix for this special case. Then the
expression for each element of Q*, defined by Q* = K*-I, can be

obtained by generalizing the results for the inverses of the
covarlance matrices associated with a two-element array, a three-
element array, etc. It is found that all submatrices Qti are
identical and diagonal. The nonvanishing elements -1

(qa' R(N+i)(N+x)1 R(2N+t)',2N+x) ' ec -

may be written as

( + (m-2)(xt-hw)(2-34) qt(i~l )N+.t][(i.I )N+{]=f (2 .w2 "
*+(m-2)x (-hw)- (m-l)(.hw)

X + (m-2) • (X -h) 1 < 1 < m

hw •[n -(m-1)h w] - -

The submatrices Qit, Ij, are equal and diagonal as well. The
diagonal elements May be expressed as

-( hw)
(2-35) q(i-l)N+E(-w (m'1)hw].

Combining Eqs. (2-34) and (2-35), we have
•6 Xt - hw ."

(2-36)- , 1 1, j < m(2-6) E(i-l)N+t][(J-1)N+t] , hw[m (m-1)h w] l :

+A simple proof of Eq. (2-36) is shown in Appendix A. Notice that
Qj Ki for all i andJ.

13
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Although Eq. (2-36) is only good for v 0 0, the result of this special
case can be generalized.

D. Interference from Arbitrary Angles

Although the digital computer may be used to obtain the Q matrix
numerically if the order of K is not too large, we hope to obtain a
general analytical result. Thus we shall have to find another method
for computing the Q matrix.

The simplicity for the case of broadside interference is due to
the interfering signal having equal phase at each element. Suppose
we consider the following delayed signal

(2-37) rt(t) k {ai(z) + n1 (z) + wi(z)z

= a[t-(m-i)o-(i-l)T] + nEt-(m-l)vJ + wiEt-(m-i)v]i%

where Eq. (2-3) has been used to replace ai(z) and ni(z). The second
term in Eq. (2-37) does not have the index i, becuase the interference
has the same phase for all rI(t)'s. We examine the covariance matrix
associated with r*(t). Let

(2-38) r*A _ r*(t) (t) dt

i~~ I 

I

(2-39) m*z A Q~(I k  
m"•"o

Then the element of the ijth submatrix at the in position is

(2-40) E{(rTmT)(r) -m:

fT= E{n[t-(m-)v] n~u-(m-)v) (t) (u) "• dtu
T

T
+ JJ Efwi[t-(m-i)vJ w wju-(m-J)vJ l t)l(u dt du

sc 6t'u+(i'j)v] 3 t¢() du dt

- 6tn nhw) + hw'6ij JLT *(t)*(u)

6n n -h) if iJ
in *n 1

14
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Equation (2-40) indicates that the covariance matrix of ri(t) is
identical to that for broadside interference. This is also true if
ai(t) in Eq. (2-37) is replaced by bi(t),. which is the signal under
hypothesis Hb.

t- Physically, rA(t) is the signal obtained by delaying the signal
ri(t) in the ith c annel by t-(m-i)o seconds. In general, such time
shifting of the received signal could be done with a delay line
behind each array element. Since the wi(t) are assumed to be wide-
sense stationary processes, shifting on the time axis will not
affect their statistics. We next examine how the r* 's are related
to the ri.'s. We know that

::ii N

(2-41) ri(t) = lim ri *(t), -T < t < T
* N- o 1-

It is also true that

N
(2-42) ri[t-(m-i = lim [ ri2 .,jFt-(m-i)v], -T < t-(m-i)v < T

N->-o I=

and

N
(2-43) rf(t) A riEt-(m-i)v]- lim rt r¢(t)

N-c 1=

* Equating Eqs. (2-42) and (2-43), we have

(2-44) I ri, M (t)= rix ,t-(m-i)v]

If both sides of Eq. (2-44) are multiplied by On(t) and integrated
between the limits -T and T, the result yields

(2-45) r r n(t) .0Et-(m-i)v] • dt

We define the vector R*

15
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R*

R*

(2-46) R*
- R* R*

where Rt is itself a column matrix given by

(2-47) Ri A rt

,iN.

We also define a matrix C

Cl 0 0 • 0

0 C2  0 0

(2-48) CA 0 0 C3  .. 0

0 0 0 0 0

16
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where 0 is a null matrix and the submatrix C is a square, un-
symmetric matrix, defined by 1

S-"* (2-49)

I °-

LT T 1T-T €2(t) " t2
[t

-
(m '

v
)

d
]dt  ... dt

f. ET #2(t) • 21[t-Cm-ivddt..T

C T 02 ft-(m-i)v~dt -T 02(t) 2 t(M dt . T 2 (t) N[t m)v:dt

-T -T _

T T T

#,t)• It-(1-00vdt .... O~_(_)\ d-T N -T#
N lt)  

$2[t'lm-'i\']dt f-T Nt'Nt(mivd

S
In matrix notation, Eq. (2-45) may be expressed as

,.7.! (2-50) lim R* = lim CR

:i- We have pointed out earlier that if we compute E{(R*-M*)(R*-M*)T},
where M* E{R*IHI, we get the same covariance matrix as if the

interferring source were at broadside. In other words,

(2-51) K* = E{(R*-M*)(R*-M*)TI

Substituting Eq. (2-50) into Eq. (2-51), yields,

(2-52) K* = CKCT

From Eq. (2-52), it can be shown that

(2-53) Q = CT Q*C

Eq. (2-53) provides us with a much easier way to compute the Q
- matrix. Since Eq. (2-42) is defined for -T < t - (m-i)v < T and

the series given by Eqs. (2-41) and (2-43) converge to rirt) and
rt(t) respectively if N approaches infinity, Eq. (2-53) is correct
and exact if those two conditions hold. For a finite N, Eq. (2-53)
is merely an approximation.
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Now we use this transformation to find the elements of Q for

an arbitrary 0. Performing the matrix multiplications indicated
( Eq. (2-53), we find that the submatrix Qij, which is one of
M of its kind, is given by

(25) i T Qt Cj i I< i < M.(2-54) Qij = CiQijC~ i'i-j m-

If the last term for the series expansion is denoted as N, then
there are N2 elements in the square matrix Qi- We use &, with
proper subscripts, to denote elements of Q. From Eq. (2-54), we
find the element of Qij at the kn position is equal to

(2-55) T

C(i-l)N+2.Z[(j-m)N+nl ¢i [t-(m-i)v] V *[u-(m-j)v].

N
: " gt(i-l)N+k]E(j-l)Nq+k] " kt) k(u ) -dtdu

~k=1

Substituting Eq. (2-36) into Eq. (2-55), yields

(2-56)

Rf(i-l)N+I][(j-l)N-n] = f 'I t-(m-i)v-n[t-(m-j)v] • dt
'"~~~ "-wT~ "-

1 .mkhw k hT [t-(m-i)vJ * nEu-(m-j)vl-

wN. k"l mX k-(m-l)hW -

•k(t) Ok(U) •dt du

We have made use of

(2-57) 6(t-u) = f ,(t) o(u)

to get Eq. (2-56). This result will be used to formulate the
analytical expression for the test statistics in the next chapter.
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CHAPTER III
THE OPTIMUM DETECTOR FOR DETECTING COMPLETELY

KNOWN BINARY SIGNALS

A. The Likelihood Ratio Test

In this chapter, the equations of the test statistic and those
required for showing the receiver operating characteristic of the
optimum processor are formulated. The results presented here
optimize the performance of the entire detection system, rather
than the antenna array or the receiver separately.

The binary signals a(t) and b(t) are assumed known exactly.
Thus the uncertainty in the signal at the input of each channel
arises solely from the additive random noise which is the sum of
the interference and the internal noises. The detection system
will have to make a choice between two hypotheses by processing
the signal from each channel. The signal to be processed at the
ith channel can have one of two different signals:

Hypothesis Ha: ri(t) = ai(t) + ni(t) + wi(t)

Hypothesis Hb: ri(t) = bi(t) + ni(t) + wi(t)

where l - i 4 m.

Dual hypotheses testing relies on a decision rule for dividing
the observation space into two parts. Various optimum decision rules
(e.g., Bayes criterion, Neyman-Pearson criterion, etc.) can be used.
These decision criteria for the optimal receiver all lead to a like-
lihood ratio test [21):

p(RIHb) Hb
(3-1) L.R.T. A lim > threshold

-# RHa <
Ha

where N is the last term of the Karhunen-Loeve expansion. The
structure of t'-a optimum detector immediately follows once the
result for the likelihood ratio test is obtained.

The probability density function of R under hypothesis H
for a N-term Karhunen-Loeve expansion and an m-element array Is
equal to
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(3-) PRI~) 1e Y (R-A) Q(R-A)

(3-2)(p)mNI e

-~The exponent may be written as

(3-3) -. (R-A)~ Q - (R-A)

1= X X (r. -a1t) * 9 (i..1)N+.t][(j-l)N+n]* (rnan

ij= f= nT

N

tn=1

We may express Eq. (3-3) in a more compact form by defining

N

Since the Q matrix is symmetric, it can be shown that H (t,Z)

* Hj1(z~t) and thus i

(35 J ET r1(t)aj(z) + a1(t) rj(z)] H N (t~z) dt dz

d 2 ~ JJ ri(t)aj(z) *H~jtz dt dz

LHence, in terms of H!' (t~z), the exponent becomes[i
20



C: (3-6) 7Z~ (R-A) ~ .Q*(-A)

I m rT
-- ,.If, r.(t)r.(z!) * H-(t,z).dtdz

i~jyl JJ-T ~ 31

-~~ JJ ai(t) a (z) - H1 j.t,z) -dt dz

m rTN
+ i~~ 1 Tri(t) a (z) * 0 ~(t~z) -dt dz

The probability density of R under Hb is readily obtained by
changing a(t) in Eq. (3-6) to b(t). We compute the likelihood
ratio

(3-7) L.R. =i ur (RIb
N-i-o p(RIHa)

ri~t -Eb(z)- (z)- 0 (t,z).dt dz

m T

ri(t), the input of the ith channel, appears only in the first termiU of Eq. (3-7). Since a(t) and b(t) are assumned known exactly, the
second term thus is a constant and may be incorporated in the
threshold. Let

(3-8) s(t) =b(t) - a(t)

Then, from Eq. (3-7), an equivalent likelihood ratio test (ELRT) is

m rT

< threshold
H8

-a
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where we have taken the limit as N'b:

(3-10) H' (t~z) li11 HN (t z)

ijN-)or NLfl

=1 ~ ~ -

6[t[ztu'+( -j~v] 6 kzttk(U) * d d '

wn 1= -T

- i Zj=1 iJ -iij 'vlz dt' dz

(3-12)Ot' zjAz -(inJ

(3-13) tin EqY (-0)ttoE. 39)z)ed

mn T
* t 1

et R =kw be th hehl. Tetisin(iandtecinsse sdfndb

=1fV

m 22

rjtV z Ttz td

.~~ ff. . J



- o'"m TI

(3-14) L(R) A m f r(t i)s(ti).dt
1J1 -Ti )U

m fT
.!- r (ti)s j(z ) • T(t,z) - dt dz

T :i ,j=l -Ti

Ha

The likelihood ratio test leads us to the test statistic
L(R), which can be generated by correlating the delayed signal

m* ri(ti) with some known functions. We compare L(R) to a threshold
* -to make the decision.

In Eq. (3-14), the known signal s(t) and the array received
signal ri(t) are time-shifted, because

(3-15) si(ti) = siEt-(m-i)vl]

= b[t-(i-l)T-(m-i)VJ- a[t-(i-l)T-(m-i)V]

* and

(3-16) ri(ti) riFt-(m-i)vj

The delay time (i-l)T occurs because each array element has unequal
distance to the signal source. But the additional delay (m-i)v
results from computing the Q matrix using the transformation C.
The double summation term in the test statistic L(R) is influenced
by the power spectrum of the interference, for y(t,z) is obtained
from the integral equation defined by Eq. (2-11). The double N

summation term may be rewritten as

m T m ",,

(3-17) 4 L r1 (t1 ) J. s* m(t dt.I -T j1 m +

Pwhere

S T
(3-18) A sj(z ) (z) - dz(3-1 ) J -T •

23
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Hence, ri(ti) is. in general, correlated with m distorted known
signals sj(zj) because sj, s are weighted unequally. For the case
when the interference is a white noise process with autocorrelatlon
function R(t-u) = hn . 6(t-u), it is found by solving Eq. (2-11)
that At-hw = h. for all 1. Thus the weights for the s* Is are
identical and the test statistic takes a much simpler orm

* (3-19)

L(R) =11'Tri(ti)si(ti)dt - mit) (rTd

i -T1 ij I -T r( 1 s(~d

A scheme for processing the input of the ith channel based
on Eq. (3-14) is shown in Fig. 3-1.

AMPLIFIERILINE

rs1(t)
f d

OUPU

SQ

DELY I~t)+

Fig. 3-1--The ith channel processing unit.
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B. Receiver Operating Characteristic

i Since the test statistic L(R) is obtained by the linear
operation indicated by Eq. (3-14) on ri(ti), it is a Gaussian
random variable under either hypothesis. The density of L(R) is
found once its mean and variance are determined.

The mean of L(R) is readily obtained if we replace ri(ti) in
I Eq. (3-14) by its expectation, i.e.,,

(3-20)

mLa AE{L(R)IHa a

f' ai(ti)si(ti)dt" 1. ff ai(ti)s i(zj).,v(t,z).dt dz
m rT i T

and

(3-21)

m A E{L(R)IHb}

m T bii T
b (ti)si(t)dt- bi(ti)sj(zj)-,y(t,z).dt dz

1=l -T ij1 IJJ- 1 13

The variance of L(R) under either hypothesis may be calculated from
the following relation

(3-22) var{L(R)IHk } = E{L 2 (R)Ilk} - E2 {L(R)IHk }

Evaluating the variance is straightforward but tedious. The derivation
is given in Appendix B. We find that the variance of L(R) equals

(3-23)

2
L A var{L(R)IHk}, { m T: smtd- ffT "

= hw i T sl(tT)dt st)s(z)(t,zIdt dz
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By expressing si(t 1 ) as,

si(ti) = bi(ti) - att),

it can be shown that the variance a may be written in tenns of
the distance between the means of tke test statistic under
either hypotheses as

(3-24) O. - hw (mLb -mLa )

2Since a L is nonnegative, one concludes that

(3-25) mLb >mLa

We next formulate the equations for the probabilities of false
and correct detection. Let the probability of choosing Hb when Ha
is present be denoted by PF and that of choosing Hb when Hb is
present by PD. Then, as Illustrated in Fig. 3-2, the probability
of false detection is

+

(3-26) PF = I p(L(R)IHa) dL(R)

,n (LmLa) 2 -:'"-----F 2 (n m~a La

r2 j e dL = erfc* in MLa)

and the probability of correct detection is

+erfc.(x) is defined as e dy

-j

26
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(3-27) PD = p(L(R) IHb) * d L(R)

(L-mLb) 2

- ~ 2a2 - n-rnL
e L dL= erfc* L)

The PF-PD plot is referred to as the receiver operating characteristic
(ROC).

";H O  H b

____.___ __,

mLo mLb L(R)

Fig. 3-2--Probability density functions of L(R).

For a communication system, we are usually interested in the
total probability of making incorrect decisions. If the a priori

!. probabilities of the source are equal, i.e., if Pr[Ha] = Pr[Hb] = ,
then, P , the total probability of making error is simplyC

(3-28) PC: PF + (I

For a given mLa, mLb and OL, the probability of error varies with
the threshold n. The threshold no which minimizes Eq. (3-28) may
be determined by solving

U
dP

(3-29) - - 0

for n. The solution is

(3-30) no = (mLb + mLa)

27
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The corresponding probability of error, P (n) is found to be equal
to

(3-31) P (no) LbrLa)

which im plies that Pc(n ) may be minimized by maximizing
(mtb-mLl)/OL. Alternati vely, by substituting Eq (3 324) into
Eq. (3- 1), we obtain another expression for P?*o

(3-32) P (n = erfc*( ; [mLb mLa)

28



CHAPTER IV
THE DIRECTIONAL CHARACTERISTICS

-- AND THE ERROR RATE PERFORMANCE

A. Introduction

To make the general theory developed in the last chapter clearer,
we shall treat the case when the binary signals are of the form.

(4-1) Ha: a(t) = ea(t) • cos(ut + )

, (4-2) Hb: b(t) = eb(t) . cos(ut +0 )

The signals given above represent the amplitude-shift keying (ASK)
binary signals if the modulating signals ea(t) and eb(t) only
differ in amplitudes. If the modulating signals are related by
ea(t) = - eb(t), then the signals given in Eq. (4-1) and Eq. (4-2)
are biphase modulated binary signals.

The optimum communication system contains an array and an optimum
signal processor. The task for the system is to detect the binary
signals arriving from angle o in the presence of an interfering

l signal from the given angle *. To accomplish this goal, we in-
tuitively expect the system to function in favor of the signal
arriving from the desired angle e. To investigate this aspect, we
study how the system treats a testing signal arriving from an arbitrary
angle o. Since the detection system is based on a comparison of the
processor output L(R) with a threshold, we examine L(R) to determine
the system characteristics. One important characteristic of L(R) is
its mean. Hence, we study the mean instead. The performance of a
detector is judged mainly by its ability to make correct decisions.
For this reason, we shall also discuss the error rate performance and
the methods of optimizing it.

Here, we shall assume that the waveform for the testing signal
is the same as the signal a(t). The reasons for this choice are
(1) to simplify the mathematics involved, and (2) to understand the
behavior of the mean mLa through studying the directional character-
istics of the optimum system. The output from the optimum detector
(e,o) when a signal a(t) arrives from angle ^ is given by*

We use "detector (,)" to mean a detector designed to detect
the desired communication signal arriving from angle e in the
presence of the interfering signal with incident angle *.
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* T
(4-3) L(R) 1T r 1(t)st(tt)dt

- r(ti)sj (z •(t,z) •dt dz 1t,jl -T z J

where rt(tt) is defined asm :1
:; tt) L nitt) + wt(ti) + a i(t,)

A nt (t I ) + w1(ti) + aEt (i-I) cos -(m-i)v]

The mean of the system output L(R) is I
(4-4) mLa(e,4;G) AE{L(R)}

m tT a sit-(m-i)v] dt

il1 f-T

- fI ait-(m-i)v]- s.Ez-(m-j)v•
i ,i=l -T

* (t,z) • dt dz

We write mLa as a function of the angles to emphasize its dependence
on these angles. The mLa appearing in the last chapter is just
mLa(e,

The closed form representation for mLa(8,4;4) will be derived in .2
the next section. In Sections IV.C and IV .E, the directional char-
acteristics and the error rate performance are investigated. The
discussions are restricted to the case when the interfering signal
is a white noise process and the desired signals are biphase modu-
lated. Section IV.F generalizes these results to the case when the
interference is a general Gaussian, wide-sense stationary process
with arbitrary power spectrum.

*1 30
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B. The Mean of L(R)

We assume that the frequencies contained in the modulating signals
ea(t) and eb(t) are much lower than the carrier frequency so the
following approximation may be made*

(4-5) eki[t-(m-i)] ek(t), k = a and b.

U Hence, a.[t-(m-i)v] may be approximated by

(4-6) ai[t-(m-i)v] ea (t) cos{fw[t-(m-l)v] + 0s(i-l),( -V)}.

In the same manner,

(4-7) si[t-(m-i)v] , e(t) . cos{w t-(m-l)v] + Oi(i-l)W(T-V)},

where e(t) A eb(t) - e (t).b~) a

By making use of the identities

m sin(. x) s x-

" os(i-l)x =

i=l sin.)

a dm s i* s i n ( ! ! -1 x
Zsin(i-1)x X)in!

1=1 sin(y)

0 it can be shown from Eq. (4-6) and Eq. (4-7) that

*This approximation introduces a maximum time shift of d/c (m-1)
seconds in the modulation envelope. We assume this time shift
to be negligible at the maximum modulation frequency.
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m

sin 'T wr-v) -
(r-v) e(t) *cos{w~t -!!I(T+v)]+

sin f TV

mA

sin f& 6i-0) ea (t).cos{w~t - -(T+v)] + s1~

and

mA

(4-0) Et(M-~vl s E-(mi l A

isi

e(t)e Mt sin -7 W(T-T- CSv)TT

+ aY2 sin 'f (^+T-2v)

cos{2w(t 71!!L)+20S T6-C)

Substituting Eqs. (4-8), (4-9) and (4-10) into (4-4), we obtain

4(4-11)M
sin !.W(T+T-2v) T e (t)e(t)

=sin (^+T-2V) J-T

*cosC2w(t v)j + 2 - -W-(T+T)] dt
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(4-11)
(Cont.) mn-1 T (t)e(t)

sin2 (T-T) C c e ( e t+ • -r d t

sin -7 (T-T) -T

m• m

sin w (T-v) sin 2 w(T-v) 1hw
sin (i-v) sin W (T-v) w=l wz "hw+..hmIy-.-

2. w

-T

• cos{z. )Pzz)*o~ m-

cosW[z (T+v)] + s • dt dz

If wis large, the first term in Eq. (4-11) is comparatively small
and may be neglected for computation.

When the interference is a Gaussian white noise process with
spectral height hn, Eq. (4-11) reduces to a very simple form,

(4-12)

;-T e(t)ea(t) 
m l

mLa(O,-;) 2 dt cos 7 W(T-T) •

sin m w(^-T) sin W(T-v) sin }(-v)
sin w (^-T) m+ s-n

n

where numerically small terms in Eq. (4-11) have been neglected.

C. The Directional Characteristics

The detection system is assumed to operate with two signal
sources, the desired communication signal and the interference.
The incident angles for these signalsare e a~d 0, respectively. 2
Hence, the behavior of mLa(O, ;0) at 0=0 and 0=0 interest us most.
For this reason, we next study mLa(O,0;0) and mLa(O,4;4). In this
section, the interfering signal is assumed to be a Gaussian white
noise process of spectral height hn. -o

The test function L(R) is obtained by processing the sum of the
desired signal, the interference and the internal noise in the manner
given in Eq. (3-14). The quantity mLa(e,o;o) is the mean of the
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processor output L(R) under hypothesis Ha. Since the interference and
the internal noise have been assumed to be zero-mean, mLa(o,0;e) in
fact is equal to the component contributed to L(R) by the signal a(t)
from the desired sgur;e for which the processor is designed to be
optimum. Letting a:e (i.e., T=T) in Eq. (4-12), we obtain

sin 2  W(r-v) T e (t)e(t)
(4-13) mLa= - -w - -T - dt

h wsiZ (T-V -T

n

For the same reason, mLa(e,0,s) is equal to the component contributed
to L(A) by the signal alt) arriving from the angle identical to that
of the interference. Letting 8=0 (i.e., A=v) in Eq. (4-12), we find
that

(4-14) s

mLa(e,0;O) = cos -Y W( T-v) . .sin .-

tsin (-sv) s a g -

Tea(t)e(t) dt

asthe freesacearrvelngthe ssciae wit ent s carer ed Thee

e ,tet dt .

-T-

It can be shownrmE.(14 that m e never chanses ignf*agv--

Eqaton (tt) d frmstin i -V .Xi

asthe freae wfarrvel orgthe ssciae wit elnt arer Thred.Mr :

quantity m (eo; ) also vanishes if cos L (T-v) f0.
2
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d(4-15) m 7 Icos 0 cos 41 = k

where e60 and k = 1,2,3 ---. Furthermore, the absolute values of
mLa(6,0;e) and mLa(e,o;o) are bounded as functions of the incident
angles e and *. We find that

(4-16)

... I.ITealt)e(t)T e aa(t)e(t) dt m 1 m < Im

aEnd

(4-17)
, < < T e a(t)e(t)

- La -T 2 hw

m: m+ Fn

Since the upper bound for 1mLa(0,0;0)j is just the lower bound for
ImLa(e,0;o)I, the former will never become greater than the latter.

*They are equal only when e= .

The bounds given in Eq. (4-16) and Eq. (4-17) indicate that the
processor produces unequal outputs for the signal a(t) when this
signal arrives from different angles. More precisely, the processor
functions in favor of the signal a(t) when it arrives from the
desired angle e and suppresses it if the incident angle is 4.

For a fixed m and d, the ability of each processor to suppress
the signal a(t) arriving from the angle € depends on the angular
separation between the incident angles e and 0. To show this, two
typical plots of mLO(e,0;0) vs e for 0=450 are shown in Fig. 4-1 and

*Fig. 4-2. The spacing for which each detection system is designed
to be optimum is 0.5x. Also, we let ea(t)=-eb(t) so that the binary
signals are biphase modulated. Furthermore, we assume that

rT
(4-18) P f. e (t)dt = 1

In the neighborhood of 450, it is observed that ImLa(e,45°;e)1
increases rapidly and eventually reaches the maximum at 450.
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These two figures indicate that the detection system is capable of
suppressing the signal a(t) very effectively if the separation of j
and * is large. As the incident angles e and o get very close,
the suppression becomes very poor.

We now consider the case when the signal a(t) propagates into the
array from the desired angle e. The ability of the processor to favor
this signal is also dependent on the angular separation. In Fig. 4-3
and Fig. 4-4, we plot mLa(e,¢;e) vs e, given 0=450 . The antenna
spacing used by each system is again equal to 0.5x. In Fig. 4-3,
where m=4, we observe that ImLa(e,45o;6)1 begins to decrease steadily
at 0=00 and 6=700. In Fig. 4-4, where m=12, the absolute value of
each processor output decreases sharply in the neighborhood of 0=450
which is the incident angle for the interfering signal.

For a constant m and d, the difference between the delay times T

and v decreases as the incident angles e and ¢ get closer and closer.
When the separation between 0 and 0 is large enough, the change of

the difference between T and v causes the sine and cosine functions in
Eq. (4-10) and Eq. (4-15) to fluctuate periodically. When e and o get
closer and closer, the distinction between the signals from e and ¢
diminishes gradually. Consequently, the processor becomes less
capable of favoring one type of signal and suppressing another type
and vice versa. Finally, the two signals get equal treatment when
e=0.

The upper bound of ImLa(e,450 ;e) for m=12 should be three times
*higher than m=4. This property is reflected in Fig. 4-3 and Fig. 4-4.

One of the differences between mLa(e,¢;e) and mLa(0,0;0) is shown
in those figures, i.e., the former does not change sign whereas
the latter does change sign as e is varied.

*. We pointed out earlier that mLa(0,0;) vanishes if o, and n
satisfy Eq. (4-15). It can be shown from Eq. (4-13) that Eq. (4-15)
is also the condition for ImLa(e,0;e)1 to reach its upper bound.
From the discussion given earlier, it appears that an antenna array
with spacing d satisfying this condition, for a given e,0 and m,
would optimize the error rate performance of the system. We shall
discuss Eq. (4-15) more later. The upper bound of ImLa(e,¢;0)I

* increases linearly with m. The function

(4-19) f(m,h h- m)
w n h 1w&.r

which appears in the upper bound for ImLa'o,,;)j, is plotted in
Fig. 4-5 for three values of hw/hn .  It is seen that increasing m
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does not increase f(mhwhn1 ) drastically. We also observe that
f(m,hwhjl) tends to approach hwhjl as m gets large. In fact, by
expanding Eq. (4-19) into a power series, we find that

(4-20) lir f(m,h hnI) w

Equation (4-20) suggests that the upper bound for ImLa(e,0;0)1 can
not be raised appreciably by increasing m. Hence, we can widen the
difference between m La(,o;e) and mLa(e,,;) by using a large array.

2.0

mA

1. 6 -Ah

E 1.2 - hw

hn "2

0.8 13 0 0 0 C] 13 0 13 13 13

0.4 -M 0.2

00 00 00 0 00 0 0 0 0

00 4 8 12 16 20 24 28
m

Fig. 4-5--f(mhh) vs. M.

The difference in the magnitudes of Imia(eo;e)I and Imia(6,0$;01
can be best indicated by the ratioLaa

.. ............. m .w. 0
2 • .. I a . I , ,

O0 4 12 6 20 24L2
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h-.

which we may call the discrimination figure (D.F.) because it
shows the extent that the processor favors one signal and suppresses
another signal. The D.F. for the detector using a 4-element array
with spacing d = 0.5A is shown in Fig. 4-6. The incident angle for
the interfering signal is 450. As can be seen, the D.F. is usually
quite high if the separation between e and 0 is large, but decreases
sharply as e get closer to *. Ultimately, this figure goes to zero
at e=., because mLa(6,0;e) and mLa(e,o;o) become equal when e=.
For a constant m, the D.F. changes with the antenna spacing d.
Figure 4-7 shows a comparison of the D.F. for d = 0.5x and for
d - 0.75X given m=2. A plot of this figure, given 6=600 and 0=450, W
of a 4-element array detector vs hw/hn is shown in Fig. 4-8. The
quantities ImLa(e,0;e)Iand ImLa(,,0;01 increase with hwlhn at
different rates. Since the denominator in the expression of D.F.
increases faster with hwlhn than the numerator, the D.F. declines as
hwlhn increases. This indicates that the more internal noise, the
poorer Is the figure.

To broaden the study of the directional characteristics of the
detection system, we also examine the behavior of mLa(e,0;^) at an
arbitrary angle e. In order to compare easily the treatment of the
signal a(t) from A with that of the same signal from the desired
angle e, we study the normalized ratio defined as follows:

mLa (6.0;A) '
F(,o;.e)= 20.log

mLa~e¢e

For a given e and 0, the F(e,o;^) vs. 6 plot shows relative angular
response of the system to the testing signal a(t) from an arbitrary
angle 6.

Several typical curves of F(400,o;g) vs. e of a 4-element
array processor are shown in Figs. 4-9 through 4-12. The spacing
d for the array is 0.5x and hw/hn is set equal to 0.2. The incident
angle * for the interference in Fig. 4-9 is 850. The figure shows
that F(400,800 ;) reaches ils maximum at e=0 and becomes a relative
minimum at e=o. But F(e,¢;e) dges not always behave in this manner.
In Fig. 4-10, where *=450, the e which equals the incident angle for
the desired signal does not correspond to the maximum, nor does that
for the interference correspond to a relative minimum. Before giving
an explanation for this, we show the response curves for systems using
larger antenna arrays in Fig. 4-11 and Fig. 4-12. The spacing for
each system is 0.5A. In Fig. 4-11, where m=8, the discrimination
figure increases t9 the neighborhood of 20 dB. In Fig. 4-12, where

P4 m=12, F(400 , 450; e)Areaches the peak value near e=e and becomes a
relative minimum at e=0 even though the separation between e and €
is only 50.
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Fig. 4-6--Discrimination figure given m=4, d= T and 0 = 45° .

l For a given e and 0, the conditions for F(e,O;O) to be minimum
can be found from Eq. (4-12). The absolute minimum of F(e,0;e) is -
dB which occurs if

p..-1

cos rn (T-T) =0
or

sin ,(-T) 1 sin m w(T-v) sin . W(T-v)

sin ' G-T) w sin w (T-v) sin (;-v)e..sn T ) m + iN

*.,~ n
Qbviously, these two conditions are notautomatically satisfied when
e=o. The relative angular response at 0=o is the maximum for the
given incident angles if

J; mLa(8,0; O)j <_ mLa(6,O;O)l
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Fig. 4-7--Discrimination figure given m=2, *=45 and hnh =0.2.n w

for all els. From Eq. (4-12) we find that the condition given above

is satisfied if

(4-21) sin mW(T-v) = 0

where rOv(i.e.,eto). It is interesting to point out that this
condition also makes the response curve become the absolute minimum
(--dB) at e=c.

Since mLa(e,1;e) is equal to the component contributed to L(R)
by the signal a(t) from the desired source, large ImLa(e,O;e)l will
reduce the influence of the interference on making decisions. The
fact that each curve in Fig. 4-10 through Fig. 4-12 fails to assume
the maximum value at e=e indicates that the condition given in
Eq. (21) is not satisfied for each corresponding detector.

The optimum system is assumed to operate with one desired source
and one interfering source. The incident angle for the desired
signal is 0. The angular response curves shown in Fig. 4-9 through
Fig. 4-12 suggest that it might be possible for a certain detector
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Fig. 4-8--Discrimination figure vs hw/hn given m=4, d=
e=600 and =450 .

to be optimum for two desired angles. This is indeed true if the
second desired source also transmits the binary signals of the same
waveforms. This will be shown by an example given in Section IV.F.

D. The Probability of Error

The discussion so far concerns the nature of how the optimum
detection system treats the signal a(t) from different incident
angles. With this background we next examine the system performance.
For a digital communication system, the performance of the system is
judged mainly by its ability to make correct decisions. For this
reason, the technique of minimizing P,(no) defined in Eq. (3-32) is
investigated. As will become clear, minimization will involve choosing
the total number of antennas and the spacing d used by the antenna
array. In this section, we assume that the interfering signal is a
white noise process with spectral height h The desired binary
signals are assumed biphase modulated in tRe sense that ea(t)=-eb(t).
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Hence, the difference of the means of the processor output L(R)
under hypotheses Hb and Ha is equal to

Ssin 2  (T [eb(t)ea(t)]2
mb-in =2 (T-v) J MT dt
Lb La h(1f•m +'" W:i T-) -

n

where
d

x (cos e - cos 0)

A convenient figure for showing how badly the interference
and noise are for this problem is the ratio*

LT a2 (t)dt 1 1T b2 (t)dt

(S/N) A w hw

which in fact is a signal energy to the noise power density ratio.
By making use of the assumption given in Eq. (4-19), we may write
that

(4-22) h = 1

(S/N) (1 4

This equation enables us to specify hw in terms of the spectral
height ratio hw/hn and the quantity (S/N).

We now consider the detection system which usea a 4-element
array and is designed for e=550 and o=450 . The array spacing d
is 0.5x. Table 4-1 shows PF, PD and Pc vs the ratio n/n (n is
the threshold setting). This system is assumed to operate under
the conditions that (S/N) = 1.78 (2.5 dB) and hn is five times higher
than hw. The spectral height for the internal white noise is assumed
equal to 0.0093. From Table 4-1 we see that the probability of making
incorrect decisions assumes its lowest value 0.6846 x 10-J atq =0
which agrees with Eq. (3-30) because mLa is equal to -mLb here. To

The notation (S/N) does not imply the ratio is the signal-to-
noise ratio.
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reduce the detection error P,(no), it is clear from Eq. (3-31) that
we should increase

(4-23) m'1 -m a - 2 wmsin 2 - (T v)
°L  h + w  sin 2

m +'I

n

The value for (mLb-mLa)aL1 may be increased by adjusting the spacing
d or by varying m as indicated by the aquation itself. A plot of
(mib-mLa)OE vs m is shown in Fig. 4-13 for three different values of
hwlhn. The angles a and ¢ are assumed 550 and 450, respectively.
In plotting this figure, we also let (S/N) = 1.78 and d = 0.5x.
When hw/hn = 0.2, (mLb - mLa )Ga at m=6 is about 10.6, which is
higher than the value at m=4. Hence, we expect that the detection
error Pe(no) when m=6 would be lower than 0.6846 x 10-3. In fact,
P (no) for m=6 is 0.4640 x 10- .

TABLE 4-1
PF' PD and Pr(C) vs. n/aL.

n/L PF PD PE

-5.00 .96388233E 0 .lO000000E 1 .4819E 0
-4.00 .78745639E 0 .10000000E 1 .3937E 0
-3.00 .41981232E 0 .lO000000E 1 .2099E 0
-2.00 .11460924E 0 .10000000E 1 .5740E -l
-1.00 .13818979E -l .99998689E 0 .6916E -2
0.00 .68460932E -3 .99931550E 0 .6046E -3
1.00 .13207964E -4 .98618102E 0 .6916E -2
2.00 .98379510E -7 .88539076E 0 .5730E -l
3.00 .27808902E -9 .58018768E 0 .2099E 0
4.00 .29586578E -12 .21254361E 0 .3937E 0
5.00 .11784304E -15 .36117673E -l .4987E 0

The internal noise degrades the error rate performance. To
show this, curves of P5(n ) vs hw/hn for the detectors (550, 450)
with m=4 and 6 respectively are shown in Fig. 4-14. As can be seen
from Eq. (4-22), the spectral height hw increases with the ratio
hw/hn if the quantity (S/N) is constant. In plotting Fig. 4-14 we
have let (S/N) = 1.78 which is about 2.5 dB. In Fig. 4-15, we show
the curves of PE(no) vs (S/N) for the detector (550,450) using a
4-element array. The antenna spacing is again equal to 0.5x. It
can be seen from these curves that the internal noise degrades the
error rate performance drastically.
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We have shown that it is necessary to increase (mLb-mLa)OL
in order to reduce Pc(min). For the example given above, we
accomplished this by increasing the total number of antennas. But
increasing m is not the only way. As a matter of fact, the best
approach to this problem is to choose the proper spacing for the
elements of the antenna array.

E. The Optimum Spacing

* It has been pointed out earlier that for the case when the
interference is a Gaussian white noise process ImLal becomes equal
to its upper bound if e,o , m and d are related by Eq. (4-15).
Solving Eq. (4-15) for d, one finds the solution is many-valued
because k can be any integer. We define the optimum spacing dop
as the solution when k=l is chosen, i.e.,

(4-24) d Co 0 Aos0 0op _mTcos 0- Cos 0 cos 0 - cos € # 0.

Since Eq. (4-15) is not valid if e=o, there does not exist an optimum
spacing when 6=0.

Equation 13-32) indicates that the error Pe(no) decreases as
(mLb-mLa) • hi i ncreases, regardless of the power spectrum of the
interfering signal or the waveforms for the desired signals. When
the interference is a white noise process, we conclude from Eq. (4-23)

m that the smallest value for Pc(no) is obtained if d is equal o the
optimum spacing. The reason is that the quantity (mLb-mL)a[ has the
peak value at this particular spacing.

Referring to Eq. (3-14), we see that the amount of time-shifting
on s(t) and the amount of time-delaying on r(t) depend on the incident
angles and the antenna spacing. When the spacing is changed, we must
adjust each delay line to provide the correct delay.

r-1
Referring to Eq. (4-23), we find that (mLb-mLa)OL may be

* rewritten as

a [sin T_ TLb-mLa= 2 1 l Io

°L w m  M+w sin --

n

where the ratio d/dop may be called the normalized spacing. In
order to compare the error rate performance for systems optimized
for different spacings, several curves of PC(nn) vs. d/d0 are
shown in Fig. 4-16. In plotting these curves, we let (S ) = 1.78
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and hNlhn : 0.2. In Fig. 4-16, each curve reaches the minimum at
d/do as we have expected. The error PE(no) at d/dop = 1 for
m = 3 is almost one thousand times lower than the value at 0.5.
This clearly points out that the spacing d plays a very important
role in the error rate performance. We shall use P,(min) to denote
the error rate for the system which is designed for an optimum spacing.

To show the lowest detection error available to a given array
size, the curves of PE(min) vs. (S/N) for m=2 through 5 given
Nw/hn = 0.2, 0.5 and 1.0 are shown in Fig. 4-17 through Fig. 4-19.
These curves are valid for arbitrary incident angles e and o as long
as the spacing used by each system is equal to the optimum spacing
for the given e and . The reason for this is given in the next
section.

- F. Arbitrary Power Spectrum

The optimum spacing dop defined by Eq. (4-24) is found by
examining the behavior of mLa(e,0;o) under the assumption that the
interfering signal is a white noise process. In this section, we
shall show that this particular spacing also optimizes the error
rate performance even though the interfering signal is characterized

* by a different power spectrum. The signal waveforms considered in
this section are assumed to have the general expressions as given
in Eq. (4-1) and Eq. (4-2).

aFor an arbitrary power spectrum, the difference between the means
of the test function L(R) under hypotheses Hb and Ha may be derived
from Eq. (3-14). The result may be written as

(4-25)

mLb - mLa AE{L(R)IHb} - E{L(R)IH a}

n rT i T~
S2s(ti)dt - i s(ti)s(z ).(tz)-dt dz) i( ill f-T s i ijOl T )siz

= -T m 2

i=l -T i £l m + J
)-hw

- Since the eigenvalues (A-hw) are always positive and s(t) and oz(t)
* - are real functions, we may write that

m T

(4-26) mLb m La i- j J s2(ti)dt
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The closed form expression for

I m2
Z si(t i)

* is readily obtained when we replace T and ea(t) in Eq. (4-10) by T
and e(t), respectively. Hence,

(4-27)

i~i~i m T: 2 T_

T s (ti )dt = m * dt
-T

sin ,.(T-V) f-T CO 2(t

+ 2 s - (m-l)w dt

The second term of Eq. (4-27) is much smaller than the first term.
Thus the upper bound of (mLb-mLa) is approximately equal to

m T e2 (t) • dt.

When the array is spaced according to Eq. (4-24), we find that

(4-28) sin (T-v) = sin mw(T-v) = 0

- As a result, we conclude from Eq. (4-8) that

m:- [ si(t i ) = 0

i=l 1

Consequently, the left side of Eq. (4-26) is equal to the right side.
Also, the second term of Eq. (4-27) vanishes because sin mW(T-V) - 0.
Hence, we obtain

(429 m eT e2(t) dt
(4-29) mLb " mLa = -T
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which is very close to the highest value of (mLb-mLa) we can get.
Substituting Eq. (4-29) into Eq. (3-32), we obtain the detection
error

(4-30) P (min) = erfc*(. LT 2t dt1

This is the lowest error rate available for a given array size.

Equation (4-30) does not contain the incident angles 0 and @.
This implies that this error rate does not depend on the angular
separation between the interfering source and the desired signal
source. The optimum spacing is a function of e, 0 and m. To
obtain this lowest error rate, we need to change the antenna spacing
and adjust the delay lines when the incident angles O and o vary.

We also notice that Eq. (4-30) does not contain the parameter
which characterizes the interfering signal. This points out that
this lowest possible error rate is independent of the power spectrum
of the interfering signal. The reason is that at this particular
antenna spacing the interfering signal is completely cancelled by the
optimum processor. A formal proof of this statement will be given
in Chapter VI.

In plotting the curves in Fig. 4-17 through Fig. 4-19, we have
used the optimum spacing for the antenna elements. Hence, these
curves are also valid for other types of power spectrums if the
desired signals are biphase modulated in the sense that ea(t)=-eb(t).

If we let the signal a(t) = 0, then Eq. (4-1) and Eq. (4-2)
represent an on-off keying binary signals. The structure for the
optimum processor becomes simpler as can be seen by the test
statistics

:+. (4-31)

m T U
11 i -T -T

(tz) dt dz,7

which is obtained by replacing s(t) in Eq. (3-14) by b(t). Ac-
cordingly, the threshold that minimizes the detection error is

1
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The lowest error rate for a given array size may be derived from
Eq. (4-30). We find that

"Iw T eb(t)
(4-32) P (min) =erfc dt

w -T

Hence, for this on-off binary signals detector, the error rate
performance can be made as good as the biphase-binary detector by

3increasing the amplitude of the signal b(t).

It was pointed out in Section IVC that some detectors may be
optimum for two desired sources if they transmit the same type of
binary signals. We now consider detection system which is
designed to be optimum for O=cos-' (0.457), p=450 , m=4 and d/x = 1.
We find that the conditions given in Eq. (4-28) are satisfied by
the data given above. Hence we obtain

(4-33) mLb -mLa = 2 e (t)dt
-T

When the same binary signals propagate into the array for the same
detection systems from angle e=cos-1 (0.957), we find that Eq. (4-28)
is again satisfied. Hence, the difference of the means is identical
to Eq. (4-33). Apparently, the same system provides the same error
rate performance to two incident angles.
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CHAPTER V
THE DETECTOR FOR BINARY SIGNALS HAVING

A RANDOM PHASE AND AMPLITUDE

A. The Optimum Processor

This chapter considers the case where the desired signal is no
longer assumed to be known exactly, but instead has certain random
parameters.

In a realistic situation, there are always at least some
parameters characterizing the communication signal that are not known.
For instance, in high frequency communication via the ionosphere and
in channels employing tropospheric propagation, the signal received
usually fluctuates in amplitude and phase due to fading and multipath
effects. These effects are usually modeled by assuming certain
parameters of the communication signal to be random variables. Signal
detection in this case is often referred to as the composite hypothesis
- testing problem.

The technique for determining an optimum processor for detecting
the binary signals having random parameters is straightforward, because
the only new feature is finding p(RIHk), where k=a or b, when certain
parameters are random. For the case when the random parameters have
the same statistics on both hypotheses, the likelihood ratio is simply
given by

(5-1)
P(RIHb)

L.R. =limN ( a)

= lim P(Rr'rHb) * p(r) • dr

N- c Ip(Rlr,Ha) * p(r) dr

where p(r) is the probability density function for the parameter
vector r, and p(Rr,l!k) is the density function of R under
hypothesis Hk for a given r [22].

In this chapter we consider the binary signals of the form:
I

Ha: a(t) = f • ea(t) acoS(Wat + 1S)

(5-2)
Hb: b(t) = f eb(t) • cos(wbt + *s)
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where the amplitude f is a Rayleigh random variable and the phase
ts is assumed uniformly distributed between -n and ff.

Three commonly used methods for transmitting binary signals over
an additive Gaussian noise channel are on-off keying (ASK), frequency-
shift keying (FSK) and phase-shift keying (PSK). It is apparent that
the model we have here can be applied to either the ASK or FSK case.

The signals given in Eq. (5-2) may be rewritten as

[a(t) FU a(t)- va (t )

(5-3) I x• y [

b(t)] ub(t) b(t)]

where we define

(5-4) x A f cos

(5-5) y Af • sin

(5-6) uk(t) A ek(t) • cos wkt ,  k = a and b,

and

(5-7) vk(t) A ek(t) • sin wkt .

x and y are independent zero-mean Gaussian random variables with
equal variances, say a2 [23]. Let

r y

then the density function for the random vector r may be written
as

(5-8) P0r) = (2fa r)' " exp 2 i

Since uk(t) and vk(t) do not contain unknown parameters, they are

completely known functions. Moreover, they are 900 out of phase.
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The desired signal may then be considered as the sum of two signals
for which the amplitudes are Gaussian random variables.

Under hypothesis Hb, the density of R associated with an
m-element antenna array and an N-term Karhunen-Lo6ve expansion
is equal to

(5-9) p(RIH =- p(Rlr,Hb) e • dx dy

2or -oo

In Eq. (5-9), the conditional density is given by

(5-10) lim ex+- ' (R-B)T . (RB}

p(Rlr,Hb) = lim
N -1 - ) N K

= limN (2.,)mNi KI -J

{. m IT .
* exp j1 T rit)r (z)" H7i(tz) dt dz

m rrT
+ ri(t)bj(z) • Hi.(t,z) • dt dz
ij=l ff-T z3 i
7Z- bi(t)b (z) • Hi(t,z) • dt
i , fT -T

From Eq. (5-3), we obtain

4 (5-11)

1i~ (Z bX u z)
b(t)b(z)=x2  Ubi(t) Ubj(z) + y2  Vbi(t) vbj(z)Ki " xy'Eubi(t) ubj(z) + voi(t) vbj(z)]

In terms of the in-phase and quadrature components of b(t), we may
rewrite

62

Ui:

.................................................



(5-12)(~,b L urner(r)JXb

N--o (271)nN IKI 2

-y -+Y-b + x LbU(r) + yL(r}"

where we define 2

(5-13)

a A 2 u -r H7'(t,z)
b- r U JJ- Ubi~t) ubj(z) iidtdiqj=1 T

Ew J11 J- bi~.Ii~uI. - ffJ-T Ubi~ti) * Ubj (Z )

* '(t,z) 
*dt dz}

to (5-14)

2 (t zT8b ar U.i bi(t) Vb.(Z) * H.~tz dt dz

a2 i m, fT m 1

- r 2{~~~i i= fbij

*~~~ YbAOPt m v f(~z t
ij1~-T Ubi 9V~j 1 f it~b~j

- ~ ~ ~ ~ ~ ~ g .d d 1 TUi~iit~t T

*b ci H(t,z) dt dz
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(5-16)

ij=l -T 1

= ~ ~ ~ r ~ 11J~ (t )ub (ti)dt
- tiL -T ~ b . z

i,j=1 ~-T

(5-17)

LbV(r) J~TrltvJ) * HOO(t,z) dt dz

1 m rT

--F J 1. - ri(ti )vbi(ti)dt

- ~~ -T r.(ti)vbj(z.)Tt,) dtd

and

(5-18) Lr(r) rit rz)HOt,z) dt dz
r,= "-T r1 t r() 7C

Substituting Eq. (5-12) into Eq. (5-9), yields

(5-19) Lr (r)

p(RIH b) 2 lrn e ~

' ' 27Tr N->- J(2 )rnN IKI

* exp 1 [i.x [2 + Y2(ab+l )-2xy b
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The parameters ab, 6b and Yb are not randoT variables. For a
given interfering power spectrum and variance a4, their values are
controlled by the spacing d, spectral height hw, number of elementam, etc. Lbu(r) and Lbv(r) are Gaussian random variables, containing
the information needed for decision making. From their expressions,
we see that Lbu(r) and Lbv(r) may be realized by schemes similar to
the one shown in Fig. 3-1. It will become clear later that the
random variable Lr(r) is irrelevant in the hypothesis testing.
Equation (5-19) may be simplified by employing

exp{ - dz = 27

The procedure for simplification is straightforward but tedious. Let

22
(5-20) Ab(LuLv) A (cb+l).L bv(r) + 2Yb.Lbu(r)Lbv(r) + (ab+l).L u(r)

and

(5-21 2
(5-21) b(~t,9bY) A (ab+l) (Sb + 1) Yb"

We find that

S (5-22) 2 u
Lr A b(L ,L

p(RIHb) = lime .N (2.)m"I K I  P b(6 I 1,y)

Replacing the subscript b by a in Eq. (5-13) through Eq. (5-17), we
generate a set of new functions which are the counterparts of ab, Bb,
Yb, Lbu(r) and Lbv(r) under hypothesis Ha. We denote them by a, Sa,
Y a' Lau (r) and Lav (r), respectively. For example

m T
a A ui(tZ) i t dt dz•~~ ~ 'Ja f ft - a T u a i (t

The density of R under Ha may be formulated in the same manner.
p(RIHa) is readily obtained if Ab(Lu,Lv) and jb(a ,,Y) in Eq. (5-22)
are replaced by their counterparts Aa(LuLv) andia(aO ,y), etc.
Hence, the likelihood ratio is given by
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(5-23) p(rlnb

L.R. = r pm
N . p(RIHa) 2
K.a ( a2Y) ., Ab(Lu'Lv) a2 A (L ,Lv),=la~ao '' bua1' a u v=lbit,.3.Y) • ex - -I- • b,.- -73)

Taking the logarithm and incorporating common terms and known

functions in the threshold, we obtain the equivalent test

(5-24)

A b (r) = pa(a,3,y) A b(Lu,Lv) -b(as,,y) a(Lu,Lv)

"'" Hb

. threshold.
Ha

The expression for the test function Ag(r) is quite complicated.
The decision process relies on observing four sufficient statistics
Lku(r) and Lkv(r), k = a and b, which are Gaussian random variables.
From Eq. (5-24), we note that tile optimum processor, in general,
consists of two similar portions, i.e., Aa(Lu,Ly) and Ab(Lu,Lv).
A scheme for generating Ab(Lu,Lv) is showh in Fig. 5-1.

B. The Distribution F"nction

To find the statistics of the test function A (r), we need to
determine its distribution. In theory, the distrigution of A (r)
under each hypothesis may be calculated by the integral

(5-25)

F A(AJHk) = JJJp(LbuLbv' L auLavIHk) L budL bvsdL au .dL av

whereXis the hyperplane defined by Eq. (5-24) and P(LbuLbv,Lau v
is the joint density of the random variables Lau(r), Lay(r), Lbu'r )
and Lbv(r) under hypothesis Hk-

4 The statistics of Lku(r) and Lkv(r), where k=a and b, under
both hypothesis are given in Appendix B. In general, they are cor-
related Gaussian random variables with zero-means. Thus the 4 x 4
covariance matrix associated with the density function p (Lbu, Lbv,
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ab + I)

; , :ISQUARE u

p2

Lbu (bu

b +
2b LbuLbv + & A b l L u L v )

2

r,.. Lbv 171

Fig. 5-1--A scheme for generating Ab(LU,LV).

L u, Lav) does not have any zero element. We expect that, in general,
t~einverse of this covariance matrix will not be diagonal. Con-
sequently, the expression for the density function is quite com-
plicated. As can be seen from Eq. (5-24), the geometry of the
hyperplane is not simple either. For these reasons, we can see that
the quadruple integral in Eq. (5-25) is difficult to evaluate.

For a constant A(r), Eq. (5-24) is the equation of an ellipsoid
of four dimensions. o simplify the geometry of-/% we shall
diagonalize the quadratic equation defininga.. The test function
A (r) may be written as
g

.T •

Lbv(r) ua* (a'yb 0 0 Lbv(r)

Lbu(r) "a-yb Ia(8b+l) 0 0 Lbu(r)

9 L r) 00 L(r)
.: ~~a Agr)= (r 00(aa+l) Pb-Ya Lav~r

L au (r) 0 0 "b-ya PC ($a+' Lau(r )
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Apparently, the coordinates which diagonalize

(5-26) [ (r T [ ( r
Ag~)~ kv lq (k+') "'Y Lkv.r

[Lku(r) L q*Yk Iq(Bk+l Lku(r)]

where
k q

k = a and b

and

q = a and b,

will also dianinalize the quadratic equation Ag(r). Let*

0 1 1Dk A.

ak + k + 2 -6k 0
A k ,k q,.

0 ak + k + 2 + k

where

6 kAJ k)2+ 4yT

Also, let us define

(5-28) Gk A_ 2 k kk+Ok -'ckk+ck LA k2 1 21
L26 Jk k+6k J:k+ok+~k AM L g~ k22J

&kl and k2 are the elgenvalues associated with the 2 x 2 symmetric
matrix given in the right side of Eq. (5-26).
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*Gk is an orthonormal matrix. Then we find that in terms of the
normal coordinatesfbu,(r). bv(r).Qau(r) and Xa (r), where

kv av

(5-29) =Dk.Gk

Lfur)-L kU (r)j

the test function A (r) has the simple representation,

(5-30) A vb (r) 4-f (r) - ,f() ~au(r) < threshold.

H
As a result, the distribution of A (r) may be evaluated alternatively
by g

FA(AI~k) JJJ~~b3V9tjst Hk)d4 dtbv *j d~t

R
The statistics of Lku and Lkv, k=a and b, under both hypotheses

are given in Appendix B. In general, they are correlated Gaussianlip random variables with zero-means. Being linear functions of Lbu,
r L1bv, Lau and Lav ' the new coordinates are therefore also zero-mean

Gaussian random variables. The covariance matrix K ssociated
with the normal coordinates is a 4 x 4 matrix
(5-31) 2bb ob~ b~

Ofb 4L bv '(bAu fbulav

4uL bu 'fav by a 9aa

bu avbv 'a u av

From Eq. (5-29) we find that in general only

(5-32) E~k4 v) 0, k =a, b.
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For this reason the four jointly normal random variables Z's cannot
be statistically independent. The variablesA's in the expression
for the joint densitye P(9bbv9au'94v) are only partially de-
coupled. As a result of this, the quadruple integral Eq. (5-31)
remains difficult to integrate. It appears that a simple, analytical
formula for the distribution of the test function A (r) given by
Eq. (5-24) seems not obtainable. g

C. The Probability Equations, ASK -

One commnonly used method for transmitting the binary symbols 0
and I using ASK signals is to send a specific signal for the symbol
1 and to send no signal at all for the symbol 0. For this special
case, only two test variables remain in the equivalent likelihood
ratio test defined by Eq. (5-24). Besides, the distribution of the
test function may be obtained by evaluating a double integral.

Suppose the signal b(t) is sent for the symbol 1. The signals
received by the ith element under both hypotheses are

Ha: ri(t) = ni (t) + wi (t)

Hb: ri(t) = ni(t) + wi(t) + X.ubi(t) - y Vbi(t)

Setting ua(t) = va(t) = 0, we obtain from Eq. (5-24) that

(5-34)

A~) 2 bu2A(r) Abl) Lbv(r) + 2yb Lbv(r)L (r) + (b~l Lbu(r)

H b
>b 2
< n
Ha

The distribution of A(r) may be evaluated by

FA(AIHk) = JJ P(bv'4u IHk) " d v " du

We shall see later that even for this special case, the double
integral given above can not be evaluated analytically either.
However, comparatively speaking, the expression for the distribution
is quite simple.
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The structure of the optimum processor for detecting on-off
binary signals is just half the general system (r). In the Lbu(r)
and Lbv(r) plane the hypothesis Ha is chosen whenever A(r) appears

* within the ellipse or Hb is chosen whenever otherwise. The geometry
(e.g., major axis) of the ellipse is decided by the thresholda bt8b
and Yb. From Eq. (5-29) we know that the quadratic equation Eq. (5-34)
may be rewritten as

(5-35) A(r) = v(r) +2r) >b  2

Ha

where*

(5-36) 4bv b• (gv1 Lbv + gb12 Lbu)

p

(5-37) u b2 (gb21 Lbv + gb22  b)

Making use of Eqs. (5-36) and (5-37), we find that the variances of
dbv (r) and Abu(r) under hypothesis Hk, k=a and b, are equal to

(5-38)

2 E2 { v'r IHk

bvk - ~bv~ k
r- b (b + Ob + 6b) b + b b)1

(5-39)

abuk 1 var {Xbu(r)IHk}

%b2 . (2,+a +b" 6 Fk
=7 " (ab + Ob 6b) * bb6b)

*Because the factor va(a,a,y) does not appear in Eq. (5-4), the
eigenvalues &bl and b2 in Eq. (5-36) are equal to (cb+Ob+2-6b)
and (ab+a b+2+6b), respectively.

71

S



where k 0 if k =a k=l if k =b

A(r) is nonnegative because-Vby and ,'bu are real functions. The
distribution function FA(AIHk) is simply given by

2 2
(5-40) bv bu

2 2

FA'I e Gv 2u. du

FA(I~k 2 bvk~buk R

(z sin e) 
2  (z cos e)

2

2 2 buk 2Obuk
27vc u e • z dz • do

bvkabuk 0 8f=0
The probability density function of the test function A(r) under
hypothesis Hk thus is

(5-41)

"FA(AIHk) 1 _FA Hk)
pA(AIHk) - 7A 247 3Z z--

+ Cosx
1 . r2 e b buk •d

4 a bvk bbuk v0bk

where A > 0. This integral can not be integrated analytically. One
'. may use a numerical integration technique to get the value. Denoting

the probability of choosing hypothesis H when Hb is present by Pd,
and the probability of choosing Hb when ha is present by Pf and
referring to Fig. 5-2, we find that

I bv :

-Hb

77 bu

Fig. 5-2--The decision plane.
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(5-42)

Sd= PA (AIHb) dA

n + c s

1i 2w e (bvb C bub 

• bvb 'bub I
and

(5-43) Pf = j PA(AIHa) * dA

whose expression is simildr to Eq. (5-42) and can be readily obtained
from the same equation when the third subscripts of abub and Obvb
are changed from b to a. Before presenting some numerical results,
we shall briefly discuss the parameters ak' ak andYk

D. On Parameters ak, k and Yk

Examining the equations for Pd and Pf, we note that they are
mainly controlled by the parameters ab, Ob and Yb. In the case
of the general optimum detection system Eq. (5-24), we expect that
the problem of optimizing the system performance would become a
problem of designing proper values for *k, Ok and Yk, where k=a and
b. For this reason, we study the properties of parameters ab, ab
and Yb- In practice, the carrier frequency wb is much greater than
the one used in the modulating signal eb(t). Very little error
would be introduced when we approximate ubi(t i) and v bi(ti) by

(54) Ubi(ti) e eb(t ) •cosfwblt-(m-l)vl-(i-l)wb('r-v)}

and

(5-5) bi(ti) v eb(t ) •inwt(m-l)v]-(i-l)wb(-)

Thus we obtain the following closed forms:
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(5-46)

.=1 sin () - 2Tv)]

(5-47)

m Fn m WbV)m
• Vbi(t i) = b eb(t)-sin{wb[t - j-_ (r+v)]}

i=l sin - (T-v)

and

(5-48)

2
i .m sin mb(T-v) eb(t) m-1

Ubi(ti)vbi(ti) sin wb(TV) " " sin{ 2 b[t -rT (T+V)]}

Comparing their definitions with the mean of L(R), Eq. (3-4), we con-
clude that parameters ab, ab and mLa(e,4;6) possess the same di-
rectional property. Using the results just obtained for

m m
.. Ubi(ti), Vbi(t i )i~l i=1l i

and

m
i i  bi(t i ) Vbi(ti),

we may derive the closed form representations of ab, ab and Yb"
For the sake of saving space we write them in a common expression
designated as g(ole 2).
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(5-4 9)  2 22(or . IT e Mt -

g(al s 2) A w sin(e2- I) •-T _ dt

2 snorb(T-v) rT e(t)
sin wbT-I) -T _ *•

w b-

~~~~~~M-1 (~)]+o~ 2 } d

* sin{2w b[t - -I (-+v) + 0"+ 1 dt

r  -sin b2

. . ..in b ( -v) -T eb (t)e b (z)

cos wb [t -T.!-1 (T+v) + 81 2

s"1w [z T (T+v)] + 821 • '(t,z) • dt dz

where e1 and 82 assume different values under different circumstances.
In terms of g(el,e 2), we find that

(5-50) ab = g(0 , i/2)

an = g(- 7/2, 0)

Yb = g(0,0),

The function ub(t) is real, so

F 7
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i=1o

m T
S Ubi(t i )  Ubj(Z j ) d (t,z) dt dz

i,j=l -T

=l T Ubi(ti)O,(t) dt

2 >0"h 
w

• m

From Eqs. (5-13) and (5-14), we thus establish that

(5-51) b ar m T v (ti)dt

a n d. .

!- or 2 T
(5-52) b - biil T (ti)dt

The upper bounds in Eq. (5-5 ) and Eq. (5-52) are nonnegative because
the integrands ui(ti) and vi.(t-) are nonnegative. As a matter of
fact, these bounds are just equal to the sum of the first two terms
of Eq. (5-49). For the case when the interference is a white noise
process with flat spectrum height hn, Eq. (5-49) reduces to

(5-53) 2T bt

2T et
r * rT eb(Tvb(t )Tgw(O0 ) 0 w m •sin(e2-6,) j-

w sin 2bt) -T

-T f:T

.1
2 2" s'in ,{(T-V) -T e M

Tw - (T- v)f-
761sin{2wb[t -r (T+V)]+0 1 + a 2  dt "

Or 1 sin W a(T-V)  2

" w " - w b "-
m+ -sin T-- (T-V)
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(5-53)
(Cont.)

"T eb(t) cos [t (T+V)+ v 1 }

si{wb t - T (T+v)] + o2}* dt

Discarding numerically small terms in Eq. (5-53), we obtain the
following approximations good for the white noise interference:

,(554) oY sin Wb(T-V) T e2(t)

m + w sin (T-V)

Yb ^0

When the spacing d between two adjacent antennas is

* (5-55) d ----b - A d
mjcos 0-Cos cP7 - OP'

where Ab is the wavelength corresponding to the angular frequency wb,
then

(5-56) sin m Wb(T-V) = sin mwb (T-v) = 0

* The spacing dop has been referred to as the optimum spacing for the
given e, 0 and m. As a result of placing an array at this particular
spacing, we find that*

m k m
(5-57) Z ubi(t i) = Z Vbi(t i) = 0

The definition of ti is: ti A t-(m-i)v = t-(m-i) d/c cos o.
When the optimum spacing is Zsed in calculating ti, we denote
the tI by ti"
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m nu
(5-58) X Ubi(ti)Vbi(ti) = 0i=l 1b

Later we shall see that these relations are extremely significant.
From the general expression Eq. (5-49), we also obtain

2 2
f 5 5 9  -T e r b(t)

(5-59) ab = b W . M dt

w -T

Yb = 0

which are inqependent of the power spectrum of the interference.
Notice that ab is just equal to the first term of Eq. (5-49). Since
it is much greater than the second term of the same equation, ab is
approximately equal to its bound

We now give a physical interpretation of ab, ab and Yb. The
interpretation will also apply to the parameters ca, aa and Ya for
the obvious reason. Under hypothesis Hb, the output of the sub-
processor Lbu(r) may be rewritten as

Lbu(r) = l 1 [ni(ti) + wi(ti) Ubi(ti) • dt

m lT [
- m T [i~(ti) +wi(ti)] Ubj(j ) • (t,z) * dt dz}

ff '(' + . ut'z)i ,1 f -T

b bb w

rr

Thus the component contributed to the output Lbu(r) by the desired
signal is equal to

ab Yb
x 7--y "T

or

Similarly, the component contributed to the output Lbv(r) by the
desired signal is equal to

5b Yb

oF  or

78

- . . .*.**.



Apparently, large db and b and small Tb will reduce the influence of
the interference in making decisions. Referring to Eq. (5-3), the
desired signal b(t) may be decomposed into an in-phase component and
a quadrature component, each with a random amplitude. The parameters
db and F0 represent the bit energies contributed to Lbu(r) and Lbv(r)
by the signals ub(t) and vb(t), respectively. The parameter rb
represents the cross-energy between the ub(t) and vb(t).

E. Numerical Results, ASK Signals

In this section, we investigate the characteristics of the
optimum detector for detecting the on-off keyed binary signals. We
first investigate how the system responds to a testing signal arriving
from an arbitrary angle . The testing signal used is assumed to
have the same waveform as the desired signal b(t). Again, we con-

. sider the case when the interfering signal is a white noise process
with spectral height hn. Later, the error rate performance and
methods of optimizing this performance are also discussed.

Letting Yb , 0 and ab a Bb in Eq. (5-34), we thus obtain the
processor for detecting the on-off keyed signals corrupted by
directional white noise:

(5-60) A(r) = (ab + 1) L v(r) + (a + 1) Lbu(r)
H
> 2
< n
Ha

The detection system makes decisions by comparing its processing
output A(r) to a given threshold. Whenever the processing output
is less than n2 the system signals that Ha is present; otherwise,
the system chooses Hb.

The capability of a detection system of doing its job is
uniquely decided by how the processing output under one hypothesis

* is distinct from the output under another, and the value chosen for
the threshold. A(r) is the result of processing the interference-
contaminated inputs in the manner specified by the right side of
Eq. (5-60). Hence, the characteristics of this detection system
are determined by that equation. A(r) is randomly distributed. One
important characteristic of A(r) is its mean, which we now examine.

-- Since the testing signal b(t) is assumed to propagate into the
array from angle o, the input to the ith channel of the processor
is given by
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(5-61) ri(t i) ni(t i) + wi(t i) + x ubi(t i) - Ybi(ti)

where
(562 u o (m-i) 1 Cos

(5-62) Ubi(ti) Aub [t-(i-l) c C - c

and

(5-63) v (m -i) Cs0

(5-63) AVb[t-('- cos - cos

The detection system is optimized for the desired signal arriving
from angle 8. Hence, the sub-processors Lbu(r) and Lbv(r) will
generate the outputs as follows:

(5-64)
A =1 mn~ ~ ' d

and
(5-65) i

bv(r) = F I -Ti(ti)vbi(t i)dt

r (ti) 'Y(t,z) • dt dzl

ij=l f -T J i!bjij

5eferring to Eq. (5-61), we see that the first terms of Lbu(r) and

Lbv(r) no longer represent the coherent correlators, because the
i time-shiftings in Ubi(ti) and vbi(ti) are not equal to those in--Ubi(t) and Vbi(ti), respectively. The output of the

i~ 
_TBbl

prcssr i equl T

(5-66) A(we;s) ta(h+l)efv(r)i of Lbu(r) an

Equation (5-6Qg) is just the special case of A(e,4;0) when e. The

variances of Lbu(r) and Lbv(r) may be determined from Eq. (B-18)

and Eq. (B-I9), respectively. It is found that
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(5-67) var {Ibu(r) Ib=1 + 2 + .
-' ' (ab + Y

and

1 +2 -2(5-68) var [Abv(r)IHb} -7 (b + b )

where

2

(5-69) a U uA>^b A r < Ub9 UbFw

2Or
(5-70) ab < b  Vb>

w

and
" o2

(5-71) "b A r <ubl Vb"

Comparing the right side of Eq. (5-6) with that of Eq. (4-2), we find
that they are the same if Os=O. We also find that vb(t) is equal
to Eq. (4-2) if Cs = - ff/2. Hence the closed form representation for
ab may be readily obtained from Eq. (4-11) when is set equal to
zero and

fT ea(t) e(t) • dt-T

is changed to

a, -T e 2 (t) • dt

As a result, when the interference is a white noise process we find
that

f .-
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-II

(5-72):'ic T2 e e(t)
b M-

~~*'r~ T'~''r-
w 2- dt *cos -p-- -T) -

m mwsin ( -T) 1 sin w(T.) sin s s(Tv)

si ^T- T) -- sin ;--. F
In

The closed form representations for ab and Yb when the interference :
is a white noise process may be obtained in the same manner. We
find that

(5-73) 0b "b

and

(5-74) Yb IV 0

Thus when the interference has a flat spectrum, the mean of A(e,4;a)
is simply given by,

(5-75) E{A(O,o;)IHb} (a+l) (b + b)

For the same reason as given in Chapter IV, we study the directional
characteristics of the system by examining the relative angular
response. __

i ~E{A(O,O;O) )Hb I.

(5-76) F(6,0;0) - 20 • log E{A(e,€;O)jHbl
E{A(6,0;6) Hbl

The signal b(t) is a random process. The mean of its energy in
the observatiin interval [-T,T] is equal to

{IT b2t ¢2 iT 2't

E b2(t)dt = Te(t) * dt

We define the signal energy to the total noise power density ratio as
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2 Ta ' e (t)dtr T(5-77) (S/N) = hw + hn

IT
w w

The quantity

a2 T
°r ~ IT e(t)dt

w -T

' is the signal energy to the internal (white) noise power density
ratio. We proceed to investigate the directional characteristics

through studying the angular response curve.

Figure 5-3 shows the angular response of the detection system
(50,450) which has a 2-element array with spacing 0.865x. In plotting
this curve, we assume (S/N) = 10, hwIh = 0.1 and

e (t)dt = 1.°r -_Tb

To show the effect of varying the array spacing, the response of the
detector (50,450), which uses the same number of elements with an
increased spacing (l.73x), is given in Eig. 5-4. In Fig. 5-4,
F(5O,450 ;e)is the absolute maximum at 0=50 and 0 becomes a relative
minimum at 6=45o. Physically, this curve implies that when the
signal b(t) propagates into the array from the angle e, the average
processor output is the highest. On the other hand the processor
generates almost the lowest output (in average) if the same signal
arrives from the angle 0. As a matter of fact, 1.73x is the optimum
spacing for m=2, e=50 and f=450.

In Fig. 5-5 through Fig. 5-8 we show the angular response curves
for the detectors (550,450) which are designed for different number
of antennas and different spacings. It is seen in these curves that
the response at the angle corresponding to the incident angle for
the interference is always lower than the response at 6=0. This
suggests that the optimum system possesses the same characteristics
as the one discussed in Chapter IV. In fact, F(e,¢;e) may be
written simply as
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Fig. 5-6--F(550 450 ,) vs. e given m=4, d=1.872x,

(S/N)=10 and h =/ 0.1.
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Fig. 5-7--F(550 ,450 ;e) vs. 5 given m=7, d=0.537x,
(S/N)=10 and hw/hn = 0.1.

2

(5-78) F(0,0;6) = 20 -log ( ab+ O ;
( bb

The parameter ab is often much greater than one, hence F(e,O;e)
may be approximated by

(5-79) F(0,0;5) 2 40 log

Because ab and mLa(eO;e) have the same directional property, it is
no surprise that both systems have the similar characteristics. In
plotting Fig. 5-5 and Fig. 5-7 an optimum spacing is used by each
detector. As a result, the average processor output is always the -_

highest when the signal b(t) propagates into the array from the
desired source.

To examine the behavior of F(o,,;5) when e=o, we show four curves
in Fig. 5-9 through Fig. 5-12. In plotting these curves, we again let
(S/N) = 10, hwlhn = 0.1 and

2fr e b (t)dt 1.
-T

86



20 40 60 80 100 120 140 160 180
( DEGREES)

-20o

0

-20-

*5 -3

-55-

0 0
Fig. 5-8--F(55 ,45 ;a) vs. o given m=7, d=1.070x,

(S/N)=10 and h = / 0.1.
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Fig. 5-9--F(550,50;;) vs. ogiven mn=2, d0.936 ,
(S/N)=10 and hwh 0.1.
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Fig. 5-10--F(55 0 ,5 0;e) vs. 6 given m=3, d=0.577x,
(S/N)=10 and h /hn 0.1.
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Fig. 5-11.--F(550,50 ;) vs. ^a given m=4, dJ=0.936x,
(S/N)e:10 and h = / 0.1.
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Fig. 5-12. F(550,50;;) VS. ^e given n-4, d=O.936x,
• (S/N)=1O and hw/h n = 0.1. ,

It is seen that F(e,o;e) always assumes the peak value at eze=o for "
this extreme case. When =2, S/N=10 and

2f

i -T e 2t)dt = 1,
ro,

the parameter ab is equal to 110 for the system designed for the
optimum spacing. For the case shown in Fig. 5-9, ab is only equal
to 5.238. The detection error is small if ab is large. (The
equation for detection error will be given in Eq. (5-88). Apparently,
the error rate performance is extremely poor when e=o.

The basic properties of the response curve discussed in this
": section do not change if the values chosen for hw, (S/N), etc. were

different. But the error rate performance of the optimum detector
does change with these factors. With this background, we next
investigate the error rate performance.

There is no need to diagonalize the quadratic equation (5-34) .

when the interference is a white noise process, because Yb , 0.
But nevertheless, the results shown in Section V.C are still
applicable*. Letting Yb = 0 and ab = Bb, from Eqs. (5-38) and (5-39)
we obtain

*The eigenvalues are gl = BtJIand &2 = b + l when Yb = 0. The

new and the primary coordinates are related by

r, ~ u l Lbvr):
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0bvb abbT e b~F:all
(5-80) A 2

/~b

and
Cr2  - 2  cb(a+
bva Gbua CF7

(5-81) _ (2
a

Also, as a result Of Yb 0 and ab R; Ob. the probabilities of making
correct and false decisions on whether hypothesis Hb is true reduce
to

2a b
(5-82) P Q e

and

(5-83) P f 21e 2aa

In practice, the probabilities for each hypothesis to be present are
equal so that the total probability of making wrong decisions on H b
is

(5-84) P e Q,0 .5e 2a+05(lI-e )a

The error would be 0.5 if the threshold is set at zero or at infinity.
Solving aP /an = 0 for n, we find that the lowest total detection
error by adlusting the threshold is obtained when .

(5-85) n '7 ab b) b

2 2

=2 In+1 n(ob+l) A no
22
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At r b ,b, we denote Pd and Pf by Pd(ro) and Pf(no), respectively.
When n = , the two probabilities are related by

a 2 P d(no)

(5-86) Pf(no) a

bx~

where a2

( 2 a 
cb

a b
(5-87) Pdno)- = (cc b+l) b

The corresponding probability of making wrong decisions on Hb then is
1

(5-88) p(n 0.5 - 0.5 • b • (cb + )

In Eq. (5-55), the parameter ab is expressed in terms of r and v.
The delay times T and v depend on the incident angles e and 0; so
does the optimum spacing. For a given spacing d and the array size
m, the ratio d/do varies with the angles a and 0. Thus the parameter
ab may be written as a function of the normalized spacing d/dop,

(5-89) 2 fsin 2(~ d ) } jT 2~a e )dt.b 2 dT2h.

We next compare the detection errors Pe(no) for the systems use the
same array size but are designed to be optimum for the different
spacings. We shall plot the error Pe(nn) against the normalized
spacing. In plotting the curve, we assign values to (S/N) and hn/hw.
By doing this, the signal energy to the Internal noise power density
ratio is specified alternatively by

(5-90) r -T eb(t) . dt h
5' (S/N) + n

w

In Fig. 5-13 we show Pe(no) vs d/do9, where 0.2 < d/do < 2,

for m=2. The values used for S/N and hn/hw are 10 ana 31.61,
respectively. In Fig. 5-139 Pe(no) becomes minimum when the
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Fig. 5-13--Pe(no) vs. d/d0  given .-2, h /h,-31.61 and (S/N)=1O.

normalized spacing is equal to 1, i.e., when the optimum spacing is
used by the detection system. The same type of curves given M-4 and
8 are shown in Fig. 5-14 and Fig. 5-159 respectively. Again, the
detection errors Peno assume the lowest value at d - d Op.

The reason for the detector designed for an optimum spacing to
have the fewest decision mistakes can be explained mathematically
by the behavior Of Pe(%~)- In Eq. (5-88) we see that P (nlo)
decreases as ab increases. Varying the spacing d. we find that
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Fig. 5-14--Pe(no) vs. d/dop given m=4, hw/hn=31.6l and (S/N)=lO.

Qb reaches the maximum at d=dop. Hence the error Pe(n ) reaches the
minimum at this particular spacing. 0

It was pointed out in Section V.D that ab is proportional to %
the component contributed to the output of the subprocessor Lbu(r)
by the desired signal. The ability for the internal noise and

* external interference to affect the decisions becomes less effective
when ab gets large. Hence, the detection error is minimized when an
optimum spacing is employed to design the detector. For the rest of
this section, we use Pe(min) to denote the total error rate for the
system which sets the threshold at no and is designed for an optimum
spacing. 0

To emphasize, Pe(min) is the lowest detection error we can
possibly obtain for a given array size and the signal energy to the
internal noise power density ratio. Moreover, the error Pe(min) is
not affected by the incident angles e and f. The reason is that
the parameters ab, Ob and Yb are not dependent on e and * when the
system is designed for an optimum spacing.
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Fig. 5-15--Pe(no) vs. d/dop given m=8, hn/hw=31.61 and (S/N)=IO.

Up to this point in this section, the interfering signal is

assumed to have a flat power spectrum. The conditions used to
get Eq. (5-56) through Eq. (5-88) are -b=O and bVb which are
correct because the interference is a white noise process. In
Section V.0 we formally show that regardless of the power spectrum
these conditions are automatically satisfied for the system designed
for the optimum spacing for a given e,f and m. Hence, replacing
O by %b in Eq. (5-56) through Eq. (5-88), we obtain the corresponding
equations valid for the system designed for the optimum spacing and --

optimized for an arbitrary power spectrum. The error Pe(min)
associated with this detection system is equal to

49
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1

(5-91) Pe(min) 0.5 - 0.5 ( bab) 1b

where

Y
2 fT e'(t).dt

(5-92) b _T _hwIO'b
Since is invariant to the power spectrum of the interfering
signal, it is apparent that this lowest possible error Pe(min)
does not change from one power spectrum to another. Equation (5-92)
indicates that the detection error Pe(min) is uniquely determined by
the array size m and the signal energy to the internal noise power
density ratio.

We next show the curves of Pe(min) of several detectors. In
plotting these curves, we assume that hn is constant so that the
values assigned to the spectral height ratio hn/hw and ratio (S/N)
specify the desired signal energy to the internal white noise power
density ratio. For a given hn/hw, the relation between (S/N) and
the signal energy to the internal noise power density ratio is
given by Eq. (5-90). Since we shall plot Pe(min) against (S/N),
the relation between (S/N) and the signal energy to the internal
noise power density ratio is shown in Fig. 5-16 for convenience.

The error Pe(min) vs. S/N given m=2 is shown in Fig. 5-17. The
values chosen for the spectral height ratio hn/hw are 3.161, 10,
31.61 and 100. For a given S/N, the error rate Pe(min) drops as
the ratio hn/hw drops. Physically, this means that the lowest possible
detection error decreases if the internal noise level decreases. In
Chapter IV, we have concluded that the internal noise degrades the
performance of the optimum detector L(R). Here we find that the
internal noise affects the detector A() In the same manner. For
a constant internal noise level, we may either increase the array
size or raise the desired signal level for improving the error rate
performance. The same type of curves given m=4, 8 and 15 are shown
in Fig. 5-18 through Fig. 5-20. It is observed that Pe(min) drops
steadily as the array size increases from 2 to 15.

The lowest detection error available to the detector A(r) is far
greater than the error provided by the system L(R) for detecting the
completely known binary signals. The reason for having such a large
difference is obviously attributed to the random phase and random
amplitude which inevitably cause many decision mistakes for the
detector A(r).
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Fig. 5-17--P (min) vs. (S/N) given m=2.e
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Fig. 5-18--Pe (min) vs. (S/N) given m=4.
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CHAPTER VI
ON SYSTEMS DESIGNED FOR THE OPTIMUM SPACING

A. The Interference-Free Spacing

When the desired binary signals are known exactly, we have
concluded from the detection error given in Eq. (3-32) that the
number of wrong decisions is minimized when the detection system
is designed for the optimum spacing. The same conclusion is also
obtained for the random phase and amplitude ASK binary detector
discussed in the last chapter. In this section, we examine L(R),
Lbu(r) and Lbv(r) for a unified explanation for this phenomenon.
It will become clear later, the optimum spacing may be called the
interference-free spacing.

The definitions for the random variables L(R), Lbu(r) and
Lbv(r) are very similar. They may be represented by the general
expression Lg given below

(6-1)
L,-" rT m

mm

i" Lg f__ ri(ti)gi(ti) dt"

-T i=l

h bL(t) • ri(ti )dt  U

f

(6-2) 4 1 g1(z) = 0

-T j=l( ) z
because L(R) =Lo if g(t) = sit), Lbu(r) =  aif g(t) =ub(t) and
Lbv(r) =L a when g(t) 0-t) When optimum-spaced arrays are used
in both deflection systems, we have shown in Section IV.F and Section

_ V. D that

m
(6-2) i=I gi ( i) = 0

and

( Ubi(t i) vbi(ti) = 0
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In Eq. (6-1), as a result of using an optimum-spaced array, the
second term, which reflects the characteristics of the interference,
vanishes. Hence,

TVm
(6-4) L(R) - ri( ) si( ) dt

T i=1

(6-5) L (r)T m ri(ti) Ubi(ti) . dt-. (6-5) bu~r =
w  f-T l"

and

Tm
(6-6) Ibv(r) -h r b dt

Equation (6-4) through Eq. (6-6) imply that the sub-system
which varies with the power spectrum of the interfering signal is
no longer needed when the detection systen is designed for the
optimum spacing. The input to the ith channel under hypothesis Hb
is

(6-7) ri(ti) : n [t-(m-l)v] + w1(ti ) + bi(t I )

where the signal b(t) is assumed to be deterministic if ri(ti) is
substituted into Eq. (6-4), and b(t) is assumed to have a random
phase and amplitude when ri(ti) is substituted into Eq. (6-5) and
Eq. (6-6).

Substituting ri(ii) into Eq. (6-4) and simplifying the equation
by using Eq. (6-2), we obtain

(6-8)
T m tt+T m

i (R) - bi(ti) si  • dt + bi () • dt
1T J' -T i=1

• Similarly,

(6-9)

Lbu(r) x LT I u 1 (i-)dt + 1 ii . dt
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•. and

(6-10)

LbV(r) = yi dt -Vbi)w i

bvJT i=l f-T i=l

The simplified versions of L(R), Lbu(r) and Lbv(r) do not

contain the external interfering signal n(t). This implies that the
influence from the interference in the decision process is eliminated
completely by the processor when the detector is designed for an
optimum spacing. When the processor output L(R) is compared to the
threshold to make decisions, only the internal white noise wi(t) can

V cause decision mistakes for the case when the desired signals are
completely known. For signals with random amplitude and phase, the

* uncertainty in the values of x and y also cause decision errors. This
K explains why the detection error for the optimum system Air) is far

greater than the system L(R). But, nevertheless, all of t(R), tbu(r)
and Lbv(r) are interference free. Physically, we may say that the
optimum spacing is an interference-free spacing. For a given m, hw,
etc., it is this very property which enables the detector designed
for an optimum spacing to have the lwest getection eror. Becausethe eigenfunctions do not apparin (R), bu(r) and (r) any more,
the structures for detectors (R) and W(r) do not vary from one power
spectrum to another.

B. FSK Binary Detector

Equation (5-2) represents FSK binary signals when wa#wb. In
practice, the carrier frequency under one hypothesis differs from
that under the other only slightly. Also, it is a general practice
to use identical modulating signals for both hypotheses. Let

(6-11) ek(t) e(t), k = a and b,

and

(6-12) wk wo + ckwd

where wd << w = -l under hypothesis H and ek  1 under hypothesis
Hb. For simplicity, we define a

(6-13) uo(t) A e(t) cos wot
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and

(6-14) vo(t) Ae(t) * sin wot

Then, from Eq. (5-6), we have

(6-15) uk(t) = uo(t) cos wdt - ek • vo(t) • sin wdt

and

(6-16) vk(t) S U(t) " sin wdt + vo(t) • cos wdt

In this section, we investigate the form of the optimum system for
detecting the FSK binary signals in Eq. (5-2) when the spacing chosen
for the array is equal to the optimum spacing defined in terms of the
wavelength A associated with the angular frequency xo. More K
precisely, 0

0
(6-17) dop A 0

m Icos -cos l

At this particular spacing, if Icos o - cos fj is not too small,
negligible error will be introduced if we approximate

(6-18) Wd[t - (m-1)v - (i-1)(T-v)] w odt

Consequently, ukt(ti) and vki(ti) may be approximated by

(6-19) uki(t i) Uo(ti) • cos ,dt - ek Vot(t) • sin wdt

and

kii fl toii sin wdt + v i(t '
(6-20) v ki(l e k "o Uo(Ai) " l d o(l os wdt .:

m m 1
respectively. Since 1 Uo=(t 1 ) V0, we conclude

from Eqs. (6-19) and (6-20) that
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.1 ~(6-21) Xug~~j

(6-22)V 1 .() 0

and1=

(6-23) u
1= kiti) vki(ti)

The elgenfunction-dependent terms once again drop out of the
equation of the test variables Lku(r) and L kv(r); so we find

(6-24) Lku (r) =hw r1(t1  * dt

and

(6-25) LkV(r) =-h- ri(t 1) vit)*dt

where uki(ti) ad vk* (t1) gre given by Eq. (6-19) and Eq. (6-20),
respectively. Lku(rl and Lkv(r) can be show free from interfering
signal. For this reason, it is believed that the FSK binary detector
designed for an optimum spacing also provides the lowest detection
error. Because an identical modulating signal is employed under
each hypothesis, we know that

2
(6-26) ==r M fW dt k aandb.

Hence,

(6-27) 'ia P Ib(QB

Resetting the threshold, from Eq. (5-24), we obtain a reduced
likelihood ratio test for FSK binary signals received by an
optimum-spacing array,
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-28 A () 2 112 Laa -2L
(6-28) fsk(r) bv + Lb - vLa(r) - Lau(r)

Hb

< threshold
Ha

Writing Lku(r) and Lkv(r) directly in terms of Uoiti) and voi(ti),
and substituting the new equations for t-ku(r) and ikv(r) into
Eq. (6-28), we obtain a simpler optimum detector:

(6-29)

Afsk = TT Au • sin wdt dt J-T Av(t i) • cos wdt • dt

T Ilk T
- I.T ut ) •cos wdt •dt • vt i  • sin dt dt

f T A t ) -T ,:-

Hb

< threshold
Ha

where
(i.),

Au(ti) = ri(ti) uoi(t i)

and

(6-30) AV(ti) = ri(t ) voi(t I)

B. On General Random Phase and
Random Ampl i tude Detector

In this section, we shall briefly discuss the optimum detector
for detecting the binary signals whose amplitudes and phases are
distributed differently from what were assumed in the last chapter.

In theory, the Joint probability density function of the random
variables x and y defined in Eq. (5-4) and Eq. (5-5) may be de-
termined once the statistics for the amplitude and the phase are
specified. Let the joint density be p(x,y). The density of R is
obtained by averaging the conditional density Eq. (5-12) over x
and y. For simplicity, we define
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-Xx 2  0k+2xyy i
p(x~y) 2 + x Lu(r) + y Lkv(r) • dx dy

A P[Lku(r), Lkv(r), ai, 6 , Yk; Cxy I

where a K and y' are equal to Qk, Bk and yk respectively if
2- = l,anh Cxy rpresents all parameters which characterize the
random variables x and y. Then the density of R under hypothesis
Hk, k=a and b, is equal to

L r(r)

p(RmHk) =K li e .P[Lku(r), Lkv(r). c{, 3, yk, Cxy]

and the likelihood ratio test takes the following general expression

(6-31)

LRT PELbu(r),Lbv(r), 
, . -, Cxyj

PiLau (r).Lav (r), aa ... C xy

f[Lbu(r),Lbv(r),.e.,L au(r),L r),.-9,a, -9 Cxy]

Hb

< threshold
Ha

If we implement the function f[.], we obtain the optimum detection
system. Since f[.] is expressed as a function of a6, Lbu(r), Lav(r),
etc., evidently, the sub-processors which compute Lku(r' and Lkv(r),
k=a and b, for the system Ag(r) are again required by this general
optimum detection system Eq. (6-31). In other words, the basic
building blocks for the random phase and random amplitude binary
detector do not change with the assumptions on the amplitude and
phase. But how the outputs of these sub-processors should be
processed is determined by the function p(x,y) because f[-] does
vary with p(xy). We have demonstrated that the variables Lku(r)
and Lkv(r) are free from the interference if the detector A(rl is
designed for an optimum spacing. Even though the formula for
the detection error of the system f[.] is not known, there is a
reason to believe that for a given array size m, spectral height
hw, etc. the lowest detection error will be provided by the system
designed for an optimum spacing.
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If we set *s=O in Eq. (5-2), then the binary signals would
contain one random parameter which is the amplitude. From Eqs.
(5-4) and (5-5) we find that y=O when *s-O. Hence the conditional
density for R under Hk becomes

2'Lr(r)  .x + XLku(r)  .

(6-32) p( RIx,Hk) = lime e

Accordingly, the likelihood ratio test associated with the random
amplitude binary signals is equal to

x2,;
(6-33)()• - + x L (r) • dx

' -: ~2 Lu~r x

Jp(x) * e

Hence, the sub-processors which compute Lau(r) and Lbu(r) in the
system Ag(r) are the building blocks for the random-amplitude
binary detector.

For most cases of interest, the analytic solutions for the
likelihood ratio test are not obtainable. As a result, various
types of approximations may be needed.
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L. CHAPTER VII
CONCLUSIONS

The goal of this research was to find the optimum detection
system for detecting corrupted binary signals received by a linear
antenna array in an effort to minimize the detection error. The
binary signals may either be completely known or have a random
amplitude, which is Rayleigh distributed, and a random phase,

U uniformly distributed between -wT and IT. The approach used to
determine the optimum system was to perform the likelihood ratio
test based on the statistical detection theory.

1.: The results presented here are obtained from analytic solutions.
It has been possible to obtain these solutions mainly because we have
derived an analytic expression for the inverse of the covariance
matrix K. Hence this research removes a mathematical difficulty
encountered frequently in analyzing pr'oblems related to optimum
space-time signal processing.

In the completely known signal case, the desired signals con-
sidered in Chapter III are the most general ones in the sense that
the waveforms may have arbitrary expressions. Hence, the equations
formulated for implementing the optimum processor and for de-
termining the system performance are valid for the ASK, FSK and
PSK binary signals.

For the case when the amplitude and phase of the desired signal
are random, the equation needed for implementing the optimum
processor was also derived. Since the phase was assumed uniformly
distributed between -wr and wr, the result can not be applied to the
PSK binary signals. In general, we shall have to use a numerical
method to determine the error rate performance of the system when
the signal has a random phase and amplitude. But when the binary
signal is an on-off keyed type, a simple-analytic formula for the

detection error is available.
The optimum processors for both cases are basically cor-

relation receivers. In general, the structures for both types
of processors are dependent on the power spectrum of the inter-
fering signal.

The directional characteristics of both detection systems have
been investigated through examining how the systems respond to a
testing signal arriving from an arbitrary angle. We have found
that both processors respond unfavorably to the testing signal in
the sense that the processor outputs are suppressed if the signal
propagates into the antenna array from the angle *. When the
testing signal arrives from the desired angle e, the processor
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outputs are high. The ability for each processor to favor the
signal from the angle e and to suppress the signal from the angle o
depends on the angular separation between e and *. It has been
shown that this ability can be improved by either increasing the
array size m or by adjusting the spacing d if the angles a and
are fixed.

* The detection error is determined by the array size, the
internal noise level, the desired signal power level and the
spacing d for which the detection system is designed to be
optimum. We have concluded that the detection error is minimized
if the array elements are spaced at an optimum spacing, which is
solely determined by e, 0 and m. The reason for this is that
the processor outputs are interference-free when this particular
spacing is chosen. Another advantage for using an optimum-spaced
array is that the power-spectrum-dependent processing units can
be removed from the processor without affecting the error rate
performance. Hence, for a given array size, signal power level,
and the spectral height hw,, the optimum detection system is also
invariant to the power spectrum of the interfering signal.

q In a realistic situation, there are always at least some
parameters characterizing a commuunication signal that are not
known. In Chapter III we have idealized the situation by
assuming the binary signals to be completely known. The detector
thus obtained represents an ideal case. The error rate associated
with this case will be lower than that for signals with random
parameters. Furthermore, this ideal detector is optimum in the
sense that for a given condition (e.g., array size, spaci~ng d,
etc.) its detection error represents a lower bound for the
performance that might be obtained with other types of array
processing (such as with adaptive array techniques [124-26]).
That is, the error rate given by Eq. (4-30) represents a lower
bound for the detection error for all conceivable binary detectors.

When the phase and amplitude are distributed otherwise, we have
* formally shown that the new likelihood ratio is expressible in terms

of random variables Lku(r) and Lkv(r) and the parameters ajk, Ok and
Yk. For this reason, discussions given in the latter portion of this
research are believed quite general.
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APPENDIX A
A PROOF OF EQ. (2-36)

k In this appendix, a simple proof of Eq. (2-36) is given. K* and
Q* are the covariance matrix and its inverse, respectively.

!K*' K*' "0• Kj~m

(A-i) K* 1 K*2  ...

* .

'.(A-2) Q* -

The general expression for the submatrix G*, of the product of K*
and O* is equal to

S ,0

,,.-. (A-3) G 'j =, M' K*p 0Q,1, 1 - 1 , ,J S m

p,,

Qj=1  Qj2  eeQ

. We need to prove that Gli is the null matrix if= i#j and G i is the
identity matrix. It ha °been pointed out that both Kij anl (t' are

... diagonal, i.e.,,
I



-I-

++

UL--

+ +

4L.4-

0 6 0 6

* 0 0 6112



The product of K!~. and is also diagonal. In terms of the elements
of M~ and Q* 'J~~ the element of 0 tx oiini qa

m

From Eqs. (2-28) and (2-33), we have

(A-7) kt(i )N+z][(p-l)N+1] = A (l-s1, )hw

Substituting Eqs. (A-7) and (2-36) into Eq. (A-6), yields
in~~~. 4 s .x -

(A-8) g7. M X(A, -(1-6i.)hl.(4) -hn

For i1~j, we have

2
= (-2( -h h ~ L(~)A~

-4 0

Hence, G* ~i equalt the nit matrix. e comlet the prohat
Eq..(2-3) i corect

-(ml)( IA W 4 J .,(m-)(,-hw)
g11

h. - m-hw hw . . .lh



APPENDIX B
THE STATISTICS OF L(R), Lku(r) and Lkv(r)

In this appendix, we derive the variances and formulate some
useful relations concerning L(R), Lku(r) and Lkv(r) defined in
Chapter III and Chapter V. The expressions for them are very similar.
In order to avoid repetitions, we define two new functions Lf and L

f 9
(B-7)

A Yi (ti) dt - .fL Yi(ti)L - "= -T gi(ti)_ i,j=l f-T

• " fj (z ) -

r..'l -v (tz) • dt dz
g3(z )

where f(t) and g(t) are not random processes,

(t,z) ,andhw

(B-2)

") ni(t) + wi(t) +c ai(t), under H a

ni (t) + wi(t) +c bi(t), under Hb

The signals a(t) and b(t) may contain random parameter r. Because
the equations to be derived will not be directly expressed in
terms of a(t) and b(t), we place e, e=O or 1, in Eq. (B-2)
to see the effects when a(t) or b(t) equals zero.

For a given r, the means of Lf and L under Hb are

U7
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h[E{Lftrk m T fit.i)
IT 1.1 dt-

Eft Ir =1'T b L()i (ti)l

The product of two conditional means is equal to

(B-4)

E{LfIH}* E{LgjrHb

C2 Tbiti~ ( ft) g(z)4~~) dt dz
.. c2  -- ff1JJ-T b(xbt)f(xZ 3

- 2 b ~ (x)b (t ).g (x )f.(zj).'(tz).dx dt dz

bxb*i- (x )f(z)(t,z) * x d dt dz

M - 9.9
.'1P .f T



(B-5)

f 9l rrT

Lf~ =II y1 t1  ~ () *f1(t1) g(zt. )x dt dtd

ij= ~-T3-

'v(x,y) *dx dy dt dz

For a given r', the mean of y.(t.)y9.(xz) under hypothesis Hb is given
by b1 9

(B-6) E{yi(t 1 ) y9.(x9.)jr, Hb

Hence, the conditional mean of Lf L under hypothesis Hb is given by

(B-7)

E{Lf L rHb

= ~ R(t-z) *f.(t.) g.(z.) .dt dz

rrrT
-m j jI R(t-x).[f,(x, )g.(z.)+gt (x t)fj(zj)l

* j~tl ~~-T

L * '(t,z) *dx dt dz
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2 T
(B-7) + *2 m MEr R(-X n n(Cont)j~n~l2

'Y(t,z) * '(x,y) *dt dz *dx dy

m T
+ hw ~ - f1(t1) g1(t1) *dt

hw XZ f f(ti)gj(zj) + g1(ti)fj(zj)].Y(t~z).dt dz

rrrT
+ m h w f.(z.).gn(yn).T(t~z)-Yi(t,y)-dt dz dy

i,=lf-T

+ ~~b(t)b (z) f" i g~j td
£i ,j=l f_

2 mTb(tnn-c (t )b(x) f()g(z)(,f~j
fff-T

* '(~y *'i(tz)* x y~tz d d z

The expression given above may be simplified by applying the
following relations:

(B-8) MI 0~t n(t) *dt=

and
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*(B-9) R(t-z) 0 (-h -0 (00 L(Z)
IJ w Z

The second term of Eq. (B-i) is equal to

(B-10)
m

-2m R(t-x)f (X )gj(zj) - 'y(t,z) *dx dt dz

~ L.. ~l~, (t1)gj(zj). LL(t4 (z)-dt dz

The third term of Eq. (B-8) equals

wj

The fifth term of Eq. (B-8) equals

(8-12) -2 h if f1(t1) gj(zj) * '(t,z) *dt dz

The sixth term of Eq. (B-8) is equal to

(B-13) m - mw U - it)4fjz,( h) dt dz

Substituting Eqs. (B-10), (B-li), (8-12), and (8-13) into Eq. (B-7)
and simplifying the resultant expression, yields
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(B-1 4)

Efif Lg9 r. Hbl

=w h I~ f1(t1) g1(ti)dt -1 jj~T f1(t1)gj(zj)

* Y(t,z) -dt dzf

+ 2 Ii ffJJ b1(ti)b i(zj) * f.(t.) g.(z.) . dt dz

C2 m JT bi(ti)bt(xk) EfIX2~jz)g~2)jz)

zjL,iJ-l f-

Y(t,z) .dx dt dz

m T

0 Tx~y - (t~z) . dx dy dt dz

The sum of the last three terms in Eq. (B-14) are equal to Eq. (8-4).

CaselI

We next determine the variance of 1(R)., Ifand L are equal to
1(R) if f(t) = g(t) = s(t). Since the signa b t) doel not contain1::: random parameters, the conditional mean is just the mean. Hence the
variance of 1(R) under H b is

(Bl5ar{L(R)IHb1= E {L2(R)IHb - E 2{L(R)IHb

V = {Eq. (Bl4)1f(t)=.g(t)s(t) - {Eq- (B4)lf(t)gtg(t)_s(t)

=hw)dti - m f s1(t1)s (z ).v(t,z).dt dz}

L
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The variance of 1(R) under Ha may be derived in the same manner.
We have found that the variance under H a has the same expression.

Case 2

When b(t) - x ub(t) - Y vb(t), where x. y. ubtanvbtar
defined in Chapter V, then

(B-16)

Efb1(t1  b J) orlubi(ti) ubjz) + vbi(ti) vbj(zj)]

and

E{b.(t.)) = 0

*From Eq. (8-3), we obtain

E{Lf IHbI E{E{Lf Ir. H blI 0

Similarly,

Eft IHb 1 0

For the sake of simplicity, we define that

m ~Tm rT
<uf iJu(t1)f 1(tidt - 1z J uj(ti )f.(z.)Y(t,z).dt dz

m rT m ,T
<v>A v Iv(ti)gi(ti)dt- i v(t)g(z.)y(t..z).dt dz,

1=1 J-T1  1,3=1 f-T 1 1 3

etc. From Eq. (6-14) and Eq. (B-16), we obtain
(B-17)

E(if LgI Hb} E(E(Lf L jr, Hbl

=w - <fog> c2a2

2 2
+ F- cr <vbf> <v OP.g
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E{lf.19 JHa} is readily obtained when the subscript b in Eq. (B-17) is
changeu to a. The parameters ak' ak and r k defined in Chapter V umay
be written as

ck w '(uk9 uk>, k9 ad

w

r r[ ~F uk, vk> j<vk. Uk

We next formulate the variances. If and L are equal to Lku(y),
k =a and b. if f(t) =g(t) = h'1 u kt). Rence,

(B-18) (y = Eft 2 (y)IH I - E 2 LU(y)IHkI

k <U u 2 h<u (u >2 +c2a2 h_2 <uv>2
w VkU> r w kk r w(kV k

VLf(y) and L (Y) are equal to L ~(Y) if f(t) = g(t) =-h- vk~

2 2 2 wecut(B{19)uv)Lv(Y)~l - +{k~yIk E{LkY)I

Fv k k(k)
Toeeinnera L ()and (y)r unde acorrelated . f anmut

L{ 121()I { y)H EL yIku kv k ku kvI
1 2. . . . . . . . .

. . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . ..k)}
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in Chapter V that Yk =,O- When the interference is a white noise '
process, we know that Yk : 0. From Eq. (B-20), we conclude that
Lku(-y and Lkv(,) are uncorrelated for those two special cases.
Other relations can also be obtained from the general formula
Eq. (B-17). For example,

EftLau(y)L bu(Y) IHb)

C22 c2G2

=h 1l< <Ub > + r<Uu b<bu> + r
h;~ <VbsUb><va9ua>

w

=1 (alb b *a9Vb + c Yb<uva>

Hence, I u(y) and Lbu (y) are also correlated. In Section V.8, we
need to now the varvances of L U(y) and Lav(Y) when c= 0. Letting
E=0 in Eq. (B-18) and Eq. (B-1911 we obtain the variances:

(B-22) var{L au (y) IHkl

and

(B-23) var{Lav 6') Hk I B

We can show from Eq. (B-17) that Lku(y) and Lqv(Y), where k, pza
and b, are uncorrelated if an optimum-spaced array is used in the
detection system. The same results do not exist between Lau~y) and
LbOY) or between L (Y) and L ()if an optimum-spaced array is
used. av Lbv(
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